Do you want to publish a course? Click here

Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network

472   0   0.0 ( 0 )
 Added by Cecilia Clivati
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise was passively cancelled, and we compared two optical frequencies at the ultimate 1E-21 stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, that is made possible by the use of digital electronics. This scheme offers several advantages with respect to active noise cancellation, and can be upgraded to perform more complex tasks.



rate research

Read More

We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors
We have explored the performance of two dark fibers of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstalt (PTB) in Braunschweig, are connected in Hanover to form a total fiber length of 146 km. At PTB the performance of an optical frequency standard operating at 456 THz was imprinted to a cw trans-fer laser at 194 THz, and its frequency was transmitted over the fiber. In order to detect and compensate phase noise related to the optical fiber link we have built a low-noise optical fiber interferometer and investigated noise sources that affect the overall performance of the optical link. The frequency stability at the remote end has been measured using the clock laser of PTBs Yb+ frequency standard operating at 344 THz. We show that the frequency of a frequency-stabilized fiber laser can be transmitted over a total fiber length of 146 km with a relative frequency uncertainty below 1E-19, and short term frequency instability given by the fractional Allan deviation of sy(t)=3.3E-15/(t/s).
119 - S. M. F. Raupach , A. Koczwara , 2014
In long-haul optical continuous-wave frequency transfer via fiber, remote bidirectional Er$^+$-doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement we find an instability of the frequency transfer (Allan deviation of $Lambda$-weighted data with 1 s gate time) of around $1times10^{-19}$ and less for averaging times longer than 3000 s. The modified Allan deviation reaches $3times10^{-19}$ at an averaging time of 100 s, corresponding to the current noise floor at this averaging time. For averaging times longer than 1000 s the modified Allan deviation is in the $10^{-20}$ range. A conservative value of the overall accuracy is $1times10^{-19}$.
135 - Xiang Zhang , Liang Hu , Xue Deng 2021
Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been widely used for suppressing the fiber phase noise introduced by the environmental perturbations, in which an ideal phase detector with high resolution and unlimited detection range is needed to extract the fiber phase noise, in particular for noisy fiber links. We demonstrate the passive phase noise cancellation (PNC) technique without the need of phase detector could be preferable for noisy fiber links. To avoid the effect of the radio frequency (RF) from the time base at the local site in the conventional active or passive phase noise cancellation techniques, here we introduce a fiber-pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and +1 order) with properly allocating the AOM-driving frequencies allowing to cancel the time base effect. Using this technique, we demonstrate transfer of coherent light through a 260 km noisy urban fiber link. The results show the effect of the RF reference can be successfully removed. After being passively compensated, {we demonstrate a fractional frequency instability of $4.9times10^{-14}$ at the integration time of 1 s and scales down to $10^{-20}$ level at 10,000 s in terms of modified Allan deviation over the 260 km noisy urban fiber link}. The frequency uncertainty of the retrieved light after transferring through this noise-compensated fiber link relative to that of the input light achieves $(0.41pm4.7)times10^{-18}$. The proposed technique opens a way to a broad distribution of an ultrastable frequency reference with high coherence without any effects coming from the RF reference and enables a wide range of applications beyond metrology over fiber networks.
255 - G. Grosche , O. Terra , K. Predehl 2009
We demonstrate the long-distance transmission of an ultra-stable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146 km long underground fiber link with a fractional instability of 3*10^{-15} at 1 s, which is close to the theoretical limit for our transfer experiment. The relative uncertainty for the transfer is below 1*10^{-19} after 30 000 seconds. Tests with a very short fiber show that noise in our stabilization system contributes fluctuations which are two orders of magnitude lower, namely 3*10^{-17} at 1 s, reaching 10^{-20} after 4000 s.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا