Do you want to publish a course? Click here

Fractality of profit landscapes and validation of time series models for stock prices

173   0   0.0 ( 0 )
 Added by Il Gu Yi
 Publication date 2013
  fields Financial
and research's language is English




Ask ChatGPT about the research

We apply a simple trading strategy for various time series of real and artificial stock prices to understand the origin of fractality observed in the resulting profit landscapes. The strategy contains only two parameters $p$ and $q$, and the sell (buy) decision is made when the log return is larger (smaller) than $p$ ($-q$). We discretize the unit square $(p, q) in [0, 1] times [0, 1]$ into the $N times N$ square grid and the profit $Pi (p, q)$ is calculated at the center of each cell. We confirm the previous finding that local maxima in profit landscapes are scattered in a fractal-like fashion: The number M of local maxima follows the power-law form $M sim N^{a}$, but the scaling exponent $a$ is found to differ for different time series. From comparisons of real and artificial stock prices, we find that the fat-tailed return distribution is closely related to the exponent $a approx 1.6$ observed for real stock markets. We suggest that the fractality of profit landscape characterized by $a approx 1.6$ can be a useful measure to validate time series model for stock prices.



rate research

Read More

527 - Taisei Kaizoji 2013
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.
126 - Yu-Lei Wan 2018
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial variables over a period of time before the stock price hits its limit. Secondly, from the probability perspective, we investigate, with the logit model, the existence of the cooling-off effect through analyzing the high-frequency data of all A-share common stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2000 to 2011 and inspecting the trading period from the opening phase prior to the moment that the stock price hits its limits. A comparison is made of the properties between up-limit hits and down-limit hits, and the possible difference will also be compared between bullish and bearish market state by dividing the whole period into three alternating bullish periods and three bearish periods. We find that the cooling-off effect emerges for both up-limit hits and down-limit hits, and the cooling-off effect of the down-limit hits is stronger than that of the up-limit hits. The difference of the cooling-off effect between bullish period and bearish period is quite modest. Moreover, we examine the sub-optimal orders effect, and infer that the professional individual investors and institutional investors play a positive role in the cooling-off effects. All these findings indicate that the price limit trading rule exerts a positive effect on maintaining the stability of the Chinese stock markets.
368 - Junran Wu , Ke Xu , Xueyuan Chen 2021
Great research efforts have been devoted to exploiting deep neural networks in stock prediction. While long-range dependencies and chaotic property are still two major issues that lower the performance of state-of-the-art deep learning models in forecasting future price trends. In this study, we propose a novel framework to address both issues. Specifically, in terms of transforming time series into complex networks, we convert market price series into graphs. Then, structural information, referring to associations among temporal points and the node weights, is extracted from the mapped graphs to resolve the problems regarding long-range dependencies and the chaotic property. We take graph embeddings to represent the associations among temporal points as the prediction model inputs. Node weights are used as a priori knowledge to enhance the learning of temporal attention. The effectiveness of our proposed framework is validated using real-world stock data, and our approach obtains the best performance among several state-of-the-art benchmarks. Moreover, in the conducted trading simulations, our framework further obtains the highest cumulative profits. Our results supplement the existing applications of complex network methods in the financial realm and provide insightful implications for investment applications regarding decision support in financial markets.
In this study, we have investigated factors of determination which can affect the connected structure of a stock network. The representative index for topological properties of a stock network is the number of links with other stocks. We used the multi-factor model, extensively acknowledged in financial literature. In the multi-factor model, common factors act as independent variables while returns of individual stocks act as dependent variables. We calculated the coefficient of determination, which represents the measurement value of the degree in which dependent variables are explained by independent variables. Therefore, we investigated the relationship between the number of links in the stock network and the coefficient of determination in the multi-factor model. We used individual stocks traded on the market indices of Korea, Japan, Canada, Italy and the UK. The results are as follows. We found that the mean coefficient of determination of stocks with a large number of links have higher values than those with a small number of links with other stocks. These results suggest that common factors are significantly deterministic factors to be taken into account when making a stock network. Furthermore, stocks with a large number of links to other stocks can be more affected by common factors.
146 - M. Serva , U.L. Fulco , M.L. Lyra 2002
We investigate the general problem of how to model the kinematics of stock prices without considering the dynamical causes of motion. We propose a stochastic process with long-range correlated absolute returns. We find that the model is able to reproduce the experimentally observed clustering, power law memory, fat tails and multifractality of real financial time series. We find that the distribution of stock returns is approximated by a Gaussian with log-normally distributed local variance and shows excellent agreement with the behavior of the NYSE index for a range of time scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا