This translation has been withdrawn due to certain imperfections and mistakes, which are corrected in the version uploaded at The Euler Archive (see E65 at http://www.eulerarchive.org/)
An efficient computer algorithm is described for the perspective drawing of a wide class of surfaces. The class includes surfaces corresponding lo single-valued, continuous functions which are defined over rectangular domains. The algorithm automatically computes and eliminates hidden lines. The number of computations in the algorithm grows linearly with the number of sample points on the surface to be drawn. An analysis of the algorithm is presented, and extensions lo certain multi-valued functions are indicated. The algorithm is implemented and tested on .Net 2.0 platform that left interactive use. Running times are found lo be exceedingly efficient for visualization, where interaction on-line and view-point control, enables effective and rapid examination of a surfaces from many perspectives.
The Monty Hall problem is the TV game scenario where you, the contestant, are presented with three doors, with a car hidden behind one and goats hidden behind the other two. After you select a door, the host (Monty Hall) opens a second door to reveal a goat. You are then invited to stay with your original choice of door, or to switch to the remaining unopened door, and claim whatever you find behind it. Assuming your objective is to win the car, is your best strategy to stay or switch, or does it not matter? Jason Rosenhouse has provided the definitive analysis of this game, along with several intriguing variations, and discusses some of its psychological and philosophical implications. This extended review examines several themes from the book in some detail from a Bayesian perspective, and points out one apparently inadvertent error.
In this paper, we prove that if a finite number of rectangles, every of which has at least one integer side, perfectly tile a big rectangle then there exists a strategy which reduces the number of these tiles (rectangles) without violating the condition on the borders of the tiles. Consequently this strategy leads to yet another solution to the famous rectangle tiling theorem.
Translated from the Latin original Novae demonstrationes circa resolutionem numerorum in quadrata (1774). E445 in the Enestrom index. See Chapter III, section XI of Weils Number theory: an approach through history. Also, a very clear proof of the four squares theorem based on Eulers is Theorem 370 in Hardy and Wright, An introduction to the theory of numbers, fifth ed. It uses Theorem 87 in Hardy and Wright, but otherwise does not assume anything else from their book. I translated most of the paper and checked those details a few months ago, but only finished last few parts now. If anything isnt clear please email me.
Dirichlet proves the general convergence of Fourier series, after pointing out errors in an earlier attempt by Cauchy. We transcribed from Crelles Journal (1829) with numerous typographical corrections, and added a completed bibliography. Dirichlet prouve la convergence generale de la series de Fourier, apr`es avoir montre des erreurs dans un essai par Cauchy. Nous avons transcrit de Crelles journal (1829) avec de nombreuses corrections typographiques, et avons ajoute une bibliographie compl`ete.