No Arabic abstract
In this paper, we prove that if a finite number of rectangles, every of which has at least one integer side, perfectly tile a big rectangle then there exists a strategy which reduces the number of these tiles (rectangles) without violating the condition on the borders of the tiles. Consequently this strategy leads to yet another solution to the famous rectangle tiling theorem.
Using the standard Coxeter presentation for the symmetric group $S_n$, two reduced expressions for the same group element are said to be commutation equivalent if we can obtain one expression from the other by applying a finite sequence of commutations. The resulting equivalence classes of reduced expressions are called commutation classes. How many commutation classes are there for the longest element in $S_n$?
A graph $G$ is $F$-saturated if it contains no copy of $F$ as a subgraph but the addition of any new edge to $G$ creates a copy of $F$. We prove that for $s geq 3$ and $t geq 2$, the minimum number of copies of $K_{1,t}$ in a $K_s$-saturated graph is $Theta ( n^{t/2})$. More precise results are obtained when $t = 2$ where the problem is related to Moore graphs with diameter 2 and girth 5. We prove that for $s geq 4$ and $t geq 3$, the minimum number of copies of $K_{2,t}$ in an $n$-vertex $K_s$-saturated graph is at least $Omega( n^{t/5 + 8/5})$ and at most $O(n^{t/2 + 3/2})$. These results answer a question of Chakraborti and Loh. General estimates on the number of copies of $K_{a,b}$ in a $K_s$-saturated graph are also obtained, but finding an asymptotic formula remains open.
This paper considers an edge minimization problem in saturated bipartite graphs. An $n$ by $n$ bipartite graph $G$ is $H$-saturated if $G$ does not contain a subgraph isomorphic to $H$ but adding any missing edge to $G$ creates a copy of $H$. More than half a century ago, Wessel and Bollobas independently solved the problem of minimizing the number of edges in $K_{(s,t)}$-saturated graphs, where $K_{(s,t)}$ is the `ordered complete bipartite graph with $s$ vertices from the first color class and $t$ from the second. However, the very natural `unordered analogue of this problem was considered only half a decade ago by Moshkovitz and Shapira. When $s=t$, it can be easily checked that the unordered variant is exactly the same as the ordered case. Later, Gan, Korandi, and Sudakov gave an asymptotically tight bound on the minimum number of edges in $K_{s,t}$-saturated $n$ by $n$ bipartite graphs, which is only smaller than the conjecture of Moshkovitz and Shapira by an additive constant. In this paper, we confirm their conjecture for $s=t-1$ with the classification of the extremal graphs. We also improve the estimates of Gan, Korandi, and Sudakov for general $s$ and $t$, and for all sufficiently large $n$.
We present a manuscript of Paul Lorenzen that provides a proof of consistency for elementary number theory as an application of the construction of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universit{a}t Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also compare this proof to Gentzens and Novikovs, and provide a translation of the manuscript.
We study the configuration spaces C(n;p,q) of n labeled hard squares in a p by q rectangle, a generalization of the well-known 15 Puzzle. Our main interest is in the topology of these spaces. Our first result is to describe a cubical cell complex and prove that is homotopy equivalent to the configuration space. We then focus on determining for which n, j, p, and q the homology group $H_j [ C(n;p,q) ]$ is nontrivial. We prove three homology-vanishing theorems, based on discrete Morse theory on the cell complex. Then we describe several explicit families of nontrivial cycles, and a method for interpolating between parameters to fill in most of the picture for large-scale nontrivial homology.