We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.
LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LISA Pathfinder carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $ rm nT Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LISA Pathfinder operations. We characterise the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 $mu$Hz, where we measure values around 200 $ rm nT Hz^{-1/2}$ and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterise the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan {it et al} (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2,s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of night-side IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a CME expecting to be observed in another.
There is a long history of radio telescopes being used to augment the radio antennas regularly used to conduct telemetry, tracking, and command of deep space spacecraft. Radio telescopes are particularly valuable during short-duration mission critical events, such as planetary landings, or when a mission lifetime itself is short, such as a probe into a giant planets atmosphere. By virtue of its high sensitivity and frequency coverage, the next-generation Very Large Array would be a powerful addition to regular spacecraft ground systems. Further, the science focus of many of these deep-space missions provides a ground truth in the solar system that complements other aspects of the ngVLAs science case, such as the formation of planets in proto-planetary disks.
Aims. The phase scintillation of the European Space Agencys (ESA) Venus Express (VEX) spacecraft telemetry signal was observed at X-band (lambda = 3.6 cm) with a number of radio telescopes of the European VLBI Network (EVN) in the period 2009-2013. Methods. We found a phase fluctuation spectrum along the Venus orbit with a nearly constant spectral index of -2.42 +/-0.25 over the full range of solar elongation angles from 0{deg} to 45{deg}, which is consistent with Kolmogorov turbulence. Radio astronomical observations of spacecraft signals within the solar system give a unique opportunity to study the temporal behaviour of the signals phase fluctuations caused by its propagation through the interplanetary plasma and the Earths ionosphere. This gives complementary data to the classical interplanetary scintillation (IPS) study based on observations of the flux variability of distant natural radio sources. Results. We present here our technique and the results on IPS. We compare these with the total electron content (TEC) for the line of sight through the solar wind. Finally, we evaluate the applicability of the presented technique to phase-referencing Very Long Baseline Interferometry (VLBI) and Doppler observations of currently operational and prospective space missions.
Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric radio window: 10-240MHz, that will greatly facilitate observing pulsars at low radio frequencies. Through the huge collecting area, long baselines, and flexible digital hardware, it is expected that LOFAR will revolutionize radio astronomy at the lowest frequencies visible from Earth. LOFAR is a next-generation radio telescope and a pathfinder to the Square Kilometre Array (SKA), in that it incorporates advanced multi-beaming techniques between thousands of individual elements. We discuss the motivation for low-frequency pulsar observations in general and the potential of LOFAR in addressing these science goals. We present LOFAR as it is designed to perform high-time-resolution observations of pulsars and other fast transients, and outline the various relevant observing modes and data reduction pipelines that are already or will soon be implemented to facilitate these observations. A number of results obtained from commissioning observations are presented to demonstrate the exciting potential of the telescope. This paper outlines the case for low frequency pulsar observations and is also intended to serve as a reference for upcoming pulsar/fast transient science papers with LOFAR.