Do you want to publish a course? Click here

Counter-propagating edge modes and topological phases of a kicked quantum Hall system

206   0   0.0 ( 0 )
 Added by Erhai Zhao
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases featuring anomalous edge modes with the wrong chirality. This leads to pairs of counter-propagating chiral edge modes at each edge, in sharp contrast to stationary quantum Hall systems. We show that the pair of Floquet edge modes are protected by the chiral (sublattice) symmetry, and that they are robust against static disorder. The existence of distinctive phases with the same Chern and winding numbers but very different edge state spectra points to the important role played by symmetry in classifying topological properties of driven systems. We further explore the evolution of the edge states with driving using a simplified model, and discuss their experimental signatures.



rate research

Read More

Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed further light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency $omega$ and the hopping anisotropy are varied. A series of topologically distinct phases with counter-propagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge, and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by $hbar omega$, i.e., by absorption or emission of a photon of frequency $omega$. Our result suggests that counter-propagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.
80 - N. Goldman , G. Jotzu , M. Messer 2016
We propose and analyze a general scheme to create chiral topological edge modes within the bulk of two-dimensional engineered quantum systems. Our method is based on the implementation of topological interfaces, designed within the bulk of the system, where topologically-protected edge modes localize and freely propagate in a unidirectional manner. This scheme is illustrated through an optical-lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space. We present two realistic experimental configurations, which lead to linear and radial-symmetric topological interfaces, which both allows one to significantly reduce the effects of external confinement on topological edge properties. Furthermore, the versatility of our method opens the possibility of tuning the position, the localization length and the chirality of the edge modes, through simple adjustments of the lattice potentials. In order to demonstrate the unique detectability offered by engineered interfaces, we numerically investigate the time-evolution of wave packets, indicating how topological transport unambiguously manifests itself within the lattice. Finally, we analyze the effects of disorder on the dynamics of chiral and non-chiral states present in the system. Interestingly, engineered disorder is shown to provide a powerful tool for the detection of topological edge modes in cold-atom setups.
The quantum Hall effect is studied in the topological insulator BiSbTeSe$_2$. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the electron-doped side of the Dirac cone and the other surface to the hole-doped side, the quantum Hall edge channels are counter-propagating. The opposite edge mode direction, combined with the opposite helicities of top and bottom surfaces, allows for scattering between these counter-propagating edge modes. The total Hall conductance is integer valued only when the scattering is strong. For weaker interaction, a non-integer quantum Hall effect is expected and measured.
The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted.
We consider a finite-size periodically driven quantum system of coupled kicked rotors which exhibits two distinct regimes in parameter space: a dynamically-localized one with kinetic-energy saturation in time and a chaotic one with unbounded energy absorption (dynamical delocalization). We provide numerical evidence that the kinetic energy grows subdiffusively in time in a parameter region close to the boundary of the chaotic dynamically-delocalized regime. We map the different regimes of the model via a spectral analysis of the Floquet operator and investigate the properties of the Floquet states in the subdiffusive regime. We observe an anomalous scaling of the average inverse participation ratio (IPR) analogous to the one observed at the critical point of the Anderson transition in a disordered system. We interpret the behavior of the IPR and the behavior of the asymptotic-time energy as a mark of the breaking of the eigenstate thermalization in the subdiffusive regime. Then we study the distribution of the kinetic-energy-operator off-diagonal matrix elements. We find that in presence of energy subdiffusion they are not Gaussian and we propose an anomalous random matrix model to describe them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا