Do you want to publish a course? Click here

The Astrophysical Multipurpose Software Environment

130   0   0.0 ( 0 )
 Added by Inti Pelupessy
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.



rate research

Read More

We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a Noahs Ark milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li
This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments.
109 - Ioannis Contopoulos 2017
In view of the upcoming observations with the Event Horizon Telescope (EHT), we present our thoughts on the immediate environment of an astrophysical black hole. We are concerned that two approximations used in general relativistic magnetohydrodynamic numerical simulations, namely numerical density floors implemented near the base of the black hole jet, and a magnetic field that comes from large distances, may mislead our interpretation of the observations. We predict that three physical processes will manifest themselves in EHT observations, namely dynamic pair formation just above the horizon, electromagnetic energy dissipation along the boundary of the black hole jet, and a region of weak magnetic field separating the black hole jet from the disk wind.
GRAVITY is the four-beam, near- infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file.
The dynamics of coalescing compact binaries can be affected by the environment in which the systems evolve, leaving detectable signatures into the emitted gravitational signal. In this paper we investigate the ability of gravitational-wave detectors to constrain the nature of the environment in which compact binaries merge. We parametrize a variety of environmental effects by modifying the phase of the gravitational signal emitted by black hole and neutron star binaries. We infer the bounds on such effects by current and future generation of interferometers, studying their dependence on the binarys parameters. We show that the strong dephasing induced by accretion and dynamical friction can constraint the density of the surrounding medium to orders of magnitude below that of accretion disks. Planned detectors, such as LISA or DECIGO, will be able to probe densities typical of those of dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا