Do you want to publish a course? Click here

Accuracy of gravitational waveform models for observing neutron-star--black-hole binaries in Advanced LIGO

178   0   0.0 ( 0 )
 Added by Alexander Nitz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Advanced LIGO will be sensitive to the inspiral of a $1.4, M_odot$ neutron star into a $10,M_odot$ black hole to a maximum distance of $sim 900$ Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a NSBH binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of post-Newtonian (PN) templates to model the gravitational waves emitted during the inspiral phase of NSBH binaries. We restrict the black holes spin to be aligned with the orbital angular momentum and compare several approximants. We examine restricted amplitude waveforms that are accurate to 3.5PN order in the orbital dynamics and complete to 2.5PN order in the spin dynamics. We also consider PN waveforms with the recently derived 3.5PN spin-orbit and 3PN spin-orbit tail corrections. We compare these approximants to the effective-one-body model. For all these models, large disagreements start at low to moderate black hole spins, particularly for binaries where the spin is anti-aligned with the orbital angular momentum. We show that this divergence begins in the early inspiral at $v sim 0.2$ for $chi_{BH} sim 0.4$. PN spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron star--black hole binaries. While this complicates searches, the strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information.



rate research

Read More

The first direct detection of neutron-star-black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star-black-hole mergers at a maximum distance of 900Mpc. To acheive this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black holes angular momentum is not aligned with the orbital angular momentum it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black holes angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of $(10+1.4)M_{odot}$ neutron-star--black-hole systems would be reduced by $33 - 37%$. The error in this measurement is due to uncertainty in the Post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star-black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has non-zero angular momentum, but is aligned with the orbital angular momentum. With this bank we find that the detection rate of $(10+1.4)M_{odot}$ neutron-star-black-hole systems would be reduced by $26-33%$. Systems that will not be detected are ones where the precession of the orbital plane causes the gravitational-wave signal to match poorly with non-precessing filter waveforms. We identify the regions of parameter space where such systems occur and suggest methods for searching for highly precessing neutron-star-black-hole binaries.
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range $9-240 mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.
Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave (GW) detectors. Reliable GW models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of $84$ high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries ($1le m_1/m_2le 3$), and samples independently both black hole spins up to dimensionless spin-magnitude of $0.9$ for equal-mass binaries and $0.85$ for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass $gtrsim 50M_odot$). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio $rho$, except that SEOBNRv2s efficiency drops mildly for both black hole spins aligned with large magnitude. For parameter estimation, modeling inaccuracies of SEOBNRv2 are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly $rholesssim 15$. PhenomDs modeling errors are found to be smaller than SEOBNRv2s, and are generally irrelevant for $rholesssim 20$. Both models accuracy deteriorates with increased mass-ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all GW models during parameter estimation for recovery of binarys masses and spins.
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100,M_odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~mathrm{Gpc^{-3},yr}^{-1}$ in comoving units at the $90%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cmathbf{J}/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا