Do you want to publish a course? Click here

Binary Black Hole Mergers in the first Advanced LIGO Observing Run

153   0   0.0 ( 0 )
 Added by LVC Publications
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range $9-240 mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.



rate research

Read More

During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals and GW151226, produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected, therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass $100,M_odot$, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than $0.93~mathrm{Gpc^{-3},yr}^{-1}$ in comoving units at the $90%$ confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
Cosmic strings are topological defects which can be formed in GUT-scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension $Gmu$ and the intercommutation probability, using not only the burst analysis performed on the O1 data set, but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and Big-Bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.
Accurate parameter estimation is key to maximizing the scientific impact of gravitational-wave astronomy. Parameters of a binary merger are typically estimated using Bayesian inference. It is necessary to make several assumptions when doing so, one of which is that the the detectors output stationary Gaussian noise. We test the validity of these assumptions by performing percentile-percentile tests in both simulated Gaussian noise and real detector data in the first observing run of Advanced LIGO (O1). We add simulated signals to 512s of data centered on each of the three events detected in O1 -- GW150914, GW151012, and GW151226 -- and check that the recovered credible intervals match statistical expectations. We find that we are able to recover unbiased parameter estimates in the real detector data, indicating that the assumption of Gaussian noise does not adversely effect parameter estimates. However, we also find that both the parallel-tempered sampler emcee_pt and the nested sampler dynesty struggle to produced unbiased parameter estimates for GW151226-like signals, even in simulated Gaussian noise. The emcee_pt sampler does produce unbiased estimates for GW150914-like signals. This highlights the importance of performing percentile-percentile tests in different targeted areas of parameter space.
We present a search for gravitational waves from double neutron star binaries inspirals in Advanced LIGOs first observing run. The search considers a narrow range of binary chirp masses motivated by the population of known double neutron star binaries in the nearby universe. This search differs from previously published results by providing the most sensitive published survey of neutron stars in Advanced LIGOs first observing run within this narrow mass range and including times when only one of the two LIGO detectors was in operation in the analysis. The search was sensitive to binary neutron star inspirals to an average distance of ~85 Mpc over 93.2 days. We do not identify any unambiguous gravitational wave signals in our sample of 103 sub-threshold candidates with false-alarm-rates of less than one per day. However, given the expected binary neutron star merger rate of R = 100 - 4000 Gpc^(-3) yr^(-1), we expect O(1) gravitational wave events within our candidate list. This suggests the possibility that one or more of these candidates is in fact a binary neutron star merger. Although the contamination fraction in our candidate list is ~99%, it might be possible to correlate these events with other messengers to identify a potential multi-messenger signal. We provide an online candidate list with the times and sky locations for all events in order to enable multi-messenger searches.
Gravitational waves radiated by the coalescence of compact-object binaries containing a neutron star and a black hole are one of the most interesting sources for the ground-based gravitational-wave observatories Advanced LIGO and Advanced Virgo. Advanced LIGO will be sensitive to the inspiral of a $1.4, M_odot$ neutron star into a $10,M_odot$ black hole to a maximum distance of $sim 900$ Mpc. Achieving this sensitivity and extracting the physics imprinted in observed signals requires accurate modeling of the binary to construct template waveforms. In a NSBH binary, the black hole may have significant angular momentum (spin), which affects the phase evolution of the emitted gravitational waves. We investigate the ability of post-Newtonian (PN) templates to model the gravitational waves emitted during the inspiral phase of NSBH binaries. We restrict the black holes spin to be aligned with the orbital angular momentum and compare several approximants. We examine restricted amplitude waveforms that are accurate to 3.5PN order in the orbital dynamics and complete to 2.5PN order in the spin dynamics. We also consider PN waveforms with the recently derived 3.5PN spin-orbit and 3PN spin-orbit tail corrections. We compare these approximants to the effective-one-body model. For all these models, large disagreements start at low to moderate black hole spins, particularly for binaries where the spin is anti-aligned with the orbital angular momentum. We show that this divergence begins in the early inspiral at $v sim 0.2$ for $chi_{BH} sim 0.4$. PN spin corrections beyond those currently known will be required for optimal detection searches and to measure the parameters of neutron star--black hole binaries. While this complicates searches, the strong dependence of the gravitational-wave signal on the spin dynamics will make it possible to extract significant astrophysical information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا