Do you want to publish a course? Click here

Wavelength-Multiplexed Quantum Networks with Ultrafast Frequency Combs

164   0   0.0 ( 0 )
 Added by Nicolas Treps
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Highly entangled quantum networks cluster states lie at the heart of recent approaches to quantum computing cite{Nielsen2006,Lloyd2012}. Yet, the current approach for constructing optical quantum networks does so one node at a time cite{Furusawa2008,Furusawa2009,Peng2012}, which lacks scalability. Here we demonstrate the emph{single-step} fabrication of a multimode quantum network from the parametric downconversion of femtosecond frequency combs. Ultrafast pulse shaping cite{weiner2000} is employed to characterize the combs spectral entanglement cite{vanLoock2003}. Each of the 511 possible bipartitions among ten spectral regions is shown to be entangled; furthermore, an eigenmode decomposition reveals that eight independent quantum channels cite{Braunstein2005} (qumodes) are subsumed within the comb. This multicolor entanglement imports the classical concept of wavelength-division multiplexing (WDM) to the quantum domain by playing upon frequency entanglement as a means to elevate quantum channel capacity. The quantum frequency comb is easily addressable, robust with respect to decoherence, and scalable, which renders it a unique tool for quantum information.



rate research

Read More

110 - Y. Cai , J. Roslund , G. Ferrini 2016
Multimode entanglement is quintessential for the design and fabrication of quantum networks, which play a central role in quantum information processing and quantum metrology. However, an experimental setup is generally constructed with a specific network configuration in mind and therefore exhibits reduced versatility and scalability. The present work demonstrates an on-demand, reconfigurable quantum network simulator, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimen- tal architecture, we realize the construction of thirteen cluster states of various size and connectivity as well as the implementation of a secret sharing protocol. In particular, this simulator enables the interrogation of quantum correlations and fluctuations for a Gaussian quantum network. This initi- ates a new avenue for implementing on-demand quantum information processing by only adapting the measurement process and not the experimental layout.
In state-of-the-art quantum key distribution (QKD) systems, the main limiting factor in increasing the key generation rate is the timing resolution in detecting photons. Here, we present and experimentally demonstrate a strategy to overcome this limitation, also for high-loss and long-distance implementations. We exploit the intrinsic wavelength correlations of entangled photons using wavelength multiplexing to generate a quantum secure key from polarization entanglement. The presented approach can be integrated into both fiber- and satellite-based quantum-communication schemes, without any changes to most types of entanglement sources. This technique features a huge scaling potential allowing to increase the secure key rate by several orders of magnitude as compared to non-multiplexed schemes.
146 - Z. Zheng , O. Mishina , N. Treps 2014
We propose a Raman quantum memory scheme that uses several atomic ensembles to store and retrieve the multimode highly entangled state of an optical quantum frequency comb, such as the one produced by parametric down-conversion of a pump frequency comb. We analyse the efficiency and the fidelity of such a quantum memory. Results show that our proposal may be helpful to multimode information processing using the different frequency bands of an optical frequency comb.
We have developed the full theory of a synchronously pumped type I optical parametric oscillator (SPOPO). We derive expressions for the oscillation threshold and the characteristics of the generated mode-locked signal beam. We calculate the output quantum fluctuations of the device, and find that, in the degenerate case (coincident signal and idler set of frequencies), perfect squeezing is obtained when one approaches threshold from below for a well defined super-mode, or frequency comb, consisting of a coherent linear superposition of signal modes of different frequencies which are resonant in the cavity.
229 - Olivier Pinel 2011
Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example in cluster state computation. They can be generated either by mixing different squeezed light sources using linear optical operations, or directly in a multimode optical device. In parallel, frequency combs are perfect tools for high precision metrological applications and for quantum time transfer. Synchronously Pumped Optical Parametric Oscillators (SPOPOs) have been theoretically shown to produce multimode non-classical frequency combs. In this paper, we present the first experimental generation and characterization of a femtosecond quantum frequency comb generated by a SPOPO. In particular, we give the experimental evidence of the multimode nature of the generated quantum state and, by studying the spectral noise distribution of this state, we show that at least three nonclassical independent modes are required to describe it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا