Do you want to publish a course? Click here

Squeezing frequency combs

66   0   0.0 ( 0 )
 Added by Nicolas Treps
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed the full theory of a synchronously pumped type I optical parametric oscillator (SPOPO). We derive expressions for the oscillation threshold and the characteristics of the generated mode-locked signal beam. We calculate the output quantum fluctuations of the device, and find that, in the degenerate case (coincident signal and idler set of frequencies), perfect squeezing is obtained when one approaches threshold from below for a well defined super-mode, or frequency comb, consisting of a coherent linear superposition of signal modes of different frequencies which are resonant in the cavity.



rate research

Read More

Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometers readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuums squeezed quadrature must rotate by 90 degrees around 50Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency, heralding application of the technique in future gravitational-wave detectors.
144 - Z. Zheng , O. Mishina , N. Treps 2014
We propose a Raman quantum memory scheme that uses several atomic ensembles to store and retrieve the multimode highly entangled state of an optical quantum frequency comb, such as the one produced by parametric down-conversion of a pump frequency comb. We analyse the efficiency and the fidelity of such a quantum memory. Results show that our proposal may be helpful to multimode information processing using the different frequency bands of an optical frequency comb.
246 - N. Fabre , G. Maltese , F. Appas 2019
Encoding quantum information in continuous variables is intrinsically faulty. Nevertheless, redundant qubits can be used for error correction, as proposed by Gottesman, Kitaev and Preskill in Phys. Rev. A textbf{64} 012310, (2001). We show how to experimentally implement this encoding using time-frequency continuous degrees of freedom of photon pairs produced by spontaneous parametric down conversion. We experimentally illustrate our results using an integrated AlGaAs photon pairs source. We show how single qubit gates can be implemented and finally propose a theoretical scheme for correcting errors in a circuit-like and in a measurement-based architecture.
228 - Olivier Pinel 2011
Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example in cluster state computation. They can be generated either by mixing different squeezed light sources using linear optical operations, or directly in a multimode optical device. In parallel, frequency combs are perfect tools for high precision metrological applications and for quantum time transfer. Synchronously Pumped Optical Parametric Oscillators (SPOPOs) have been theoretically shown to produce multimode non-classical frequency combs. In this paper, we present the first experimental generation and characterization of a femtosecond quantum frequency comb generated by a SPOPO. In particular, we give the experimental evidence of the multimode nature of the generated quantum state and, by studying the spectral noise distribution of this state, we show that at least three nonclassical independent modes are required to describe it.
163 - Jonathan Roslund 2013
Highly entangled quantum networks cluster states lie at the heart of recent approaches to quantum computing cite{Nielsen2006,Lloyd2012}. Yet, the current approach for constructing optical quantum networks does so one node at a time cite{Furusawa2008,Furusawa2009,Peng2012}, which lacks scalability. Here we demonstrate the emph{single-step} fabrication of a multimode quantum network from the parametric downconversion of femtosecond frequency combs. Ultrafast pulse shaping cite{weiner2000} is employed to characterize the combs spectral entanglement cite{vanLoock2003}. Each of the 511 possible bipartitions among ten spectral regions is shown to be entangled; furthermore, an eigenmode decomposition reveals that eight independent quantum channels cite{Braunstein2005} (qumodes) are subsumed within the comb. This multicolor entanglement imports the classical concept of wavelength-division multiplexing (WDM) to the quantum domain by playing upon frequency entanglement as a means to elevate quantum channel capacity. The quantum frequency comb is easily addressable, robust with respect to decoherence, and scalable, which renders it a unique tool for quantum information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا