Do you want to publish a course? Click here

Doubling the Critical Current Density of High Temperature Superconducting Coated Conductors through Proton Irradiation

146   0   0.0 ( 0 )
 Added by Timothy Benseman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The in-field critical current of commercial YBa2Cu3O7 coated conductors can be substantially enhanced by post-fabrication irradiation with 4 MeV protons. Irradiation to a fluence of 8x10^16 p/cm^2 induces a near doubling of the critical current in fields of 6 T || c at a temperature of 27 K, a field and temperature range of interest for applications such as rotating machinery. A mixed pinning landscape of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our data indicate that there is significant head-room for further enhancements.



rate research

Read More

A relatively high critical temperature, Tc, approaching 40 K, places the recently-discovered superconductor magnesium diboride (MgB2) intermediate between the families of low- and copper-oxide-based high-temperature superconductors (HTS). Supercurrent flow in MgB2 is unhindered by grain boundaries, unlike the HTS materials. Thus, long polycrystalline MgB2 conductors may be easier to fabricate, and so could fill a potentially important niche of applications in the 20 to 30 K temperature range. However, one disadvantage of MgB2 is that in bulk material the critical current density, Jc, appears to drop more rapidly with increasing magnetic field than it does in the HTS phases. The magnitude and field dependence of Jc are related to the presence of structural defects that can pin the quantised magnetic vortices that permeate the material, and prevent them from moving under the action of the Lorentz force. Vortex studies suggest that it is the paucity of suitable defects in MgB2 that causes the rapid decay of Jc with field. Here we show that modest levels of atomic disorder, induced by proton irradiation, enhance the pinning, and so increase Jc significantly at high fields. We anticipate that chemical doping or mechanical processing should be capable of generating similar levels of disorder, and so achieve technologically-attractive performance in MgB2 by economically-viable routes.
The critical currents of MOD/RABiTS and PLD/IBAD coated conductors have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca.
We demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial 2nd generation superconducting tapes with an exposure time of just one second per 0.8 cm2. The speed demonstrated here is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.
There are numerous potential applications for superconducting tapes, based on YBa2Cu3O7-x (YBCO) films coated onto metallic substrates. A long established goal of more than 15 years has been to understand the magnetic flux pinning mechanisms which allow films to maintain high current densities out to high magnetic fields. In fact, films carry 1-2 orders of magnitude higher current densities than any other form of the material. For this reason, the idea of further improving pinning has received little attention. Now that commercialisation of conductors is much closer, for both better performance and lower fabrication costs, an important goal is to achieve enhanced pinning in a practical way. In this work, we demonstrate a simple and industrially scaleable route which yields a 1.5 to 5-fold improvement in the in-field current densities of already-high-quality conductors.
85 - Feng Feng , Qishu Fu , Timing Qu 2016
High temperature superconducting coated conductor (CC) could be practically applied in electric equipment due to its favorable mechanical properties and the critical current performance of YBCO superconducting layer. It is well known that CC could be easily delaminated because of its poor stress tolerance in thickness direction, i.e. along the c-axis of YBCO. Commonly, a stack including YBCO layer and silver stabilizer could be obtained after the delamination. It would be interesting to investigate the superconducting properties of the delaminated stack, since it could also be considered as a new type of CC with the silver stabilizer as the buffer layer, which is quite different from the oxide buffer layers in the traditional CC and might lead to new applications. In this study, a CC sample was delaminated by liquid nitrogen immersing. A Hall probe scanning system was employed to measure the critical current (IC) distribution of the original sample and the obtained stack. It was found that IC could be partially preserved after the delamination. Dense and crack-free morphologies of the delaminated surfaces were observed by scanning electron microscopy, and the potential application of the obtained stack in superconducting joint technology was discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا