We present possible indications for flavor separation during the QCD crossover transition based on continuum extrapolated lattice QCD calculations of higher order susceptibilities. We base our findings on flavor specific quantities in the light and strange quark sector. We propose a possible experimental verification of our prediction, based on the measurement of higher order moments of identified particle multiplicities. Since all our calculations are performed at zero baryochemical potential, these results are of particular relevance for the heavy ion program at the LHC.
Using combined strong coupling and hopping parameter expansions, we derive an effective three-dimensional theory from thermal lattice QCD with heavy Wilson quarks. The theory depends on traced Polyakov loops only and correctly reflects the centre symmetry of the pure gauge sector as well as its breaking by finite mass quarks. It is valid up to certain orders in the lattice gauge coupling and hopping parameter, which can be systematically improved. To its current order it is controlled for lattices up to N_tausim 6 at finite temperature. For nonzero quark chemical potentials, the effective theory has a fermionic sign problem which is mild enough to carry out simulations up to large chemical potentials. Moreover, by going to a flux representation of the partition function, the sign problem can be solved. As an application, we determine the deconfinement transition and its critical end point as a function of quark mass and all chemical potentials.
We study the temperature dependence of bottomonium for temperatures in the range $0.4 T_c < T < 2.1 T_c$, using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for $N_f=2$ light flavors on a highly anisotropic lattice. We find that the $Upsilon$ is insensitive to the temperature in this range, while the $chi_b$ propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behaviour consistent with nearly-free dynamics at $T simeq 2 T_c$.
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the spacial and temporal propagators of the iso-triplet mesons in the pseudo-scalar ($PS$), scalar ($S$), vector ($V$) and axial-vector ($AV$) channels on the lattice of three sizes. We first verify that the RG scaling is excellently satisfied for all cases. This is consistent with the claim that the chiral phase transition is second order. Then we compare the spacial and temporal effective masses between the axial partners, i.e. $PS$ vs $S$ and $V$ vs $AV$, on each of the three size lattices. We find the effective masses of all of six cases for the axial partners agree remarkably. This is consistent with the claim that at least $Z_4$ subgroup of the $U_A(1)$ symmetry in addition to the $SU_A(2)$ symmetry is recovered at the chiral phase transition point.
We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of $58~{rm MeV}lesssim m_pilesssim 163~{rm MeV}$. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of $2.8$-$4.5$ times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cut-off, corresponding to lattices with temporal extent $N_tau=6, 8$ and $12$. After thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature $T_c^0=132^{+3}_{-6}$ MeV.
We present results for the equation of state in (2+1)-flavor QCD using the highly improved staggered quark action and lattices with temporal extent $N_{tau}=6,~8,~10$, and $12$. We show that these data can be reliably extrapolated to the continuum limit and obtain a number of thermodynamic quantities and the speed of sound in the temperature range $(130-400)$ MeV. We compare our results with previous calculations, and provide an analytic parameterization of the pressure, from which other thermodynamic quantities can be calculated, for use in phenomenology. We show that the energy density in the crossover region, $145~ {rm MeV} leq T leq 163$ MeV, defined by the chiral transition, is $epsilon_c=(0.18-0.5)~{rm GeV}/{rm fm}^3$, $i.e.$, $(1.2-3.1) epsilon_{rm nuclear}$. At high temperatures, we compare our results with resummed and dimensionally reduced perturbation theory calculations. As a byproduct of our analyses, we obtain the values of the scale parameters $r_0$ from the static quark potential and $w_0$ from the gradient flow.