Do you want to publish a course? Click here

On a Heath-Jarrow-Morton approach for stock options

99   0   0.0 ( 0 )
 Added by Jan Kallsen
 Publication date 2013
  fields Financial
and research's language is English




Ask ChatGPT about the research

This paper aims at transferring the philosophy behind Heath-Jarrow-Morton to the modelling of call options with all strikes and maturities. Contrary to the approach by Carmona and Nadtochiy (2009) and related to the recent contribution Carmona and Nadtochiy (2012) by the same authors, the key parametrisation of our approach involves time-inhomogeneous Levy processes instead of local volatility models. We provide necessary and sufficient conditions for absence of arbitrage. Moreover we discuss the construction of arbitrage-free models. Specifically, we prove their existence and uniqueness given basic building blocks.



rate research

Read More

Most trading in cryptocurrency options is on inverse products, so called because the contract size is denominated in US dollars and they are margined and settled in crypto, typically bitcoin or ether. Their popularity stems from allowing professional traders in bitcoin or ether options to avoid transferring fiat currency to and from the exchanges. We derive new analytic pricing and hedging formulae for inverse options under the assumption that the underlying follows a geometric Brownian motion. The boundary conditions and hedge ratios exhibit relatively complex but very important new features which warrant further analysis and explanation. We also illustrate some inconsistencies, exhibited in time series of Deribit bitcoin option implied volatilities, which indicate that traders may be applying direct option hedging and valuation methods erroneously. This could be because they are unaware of the correct, inverse option characteristics which are derived in this paper.
In this paper, we are concerned with the valuation of Guaranteed Annuity Options (GAOs) under the most generalised modelling framework where both interest and mortality rates are stochastic and correlated. Pricing these type of options in the correlated environment is a challenging task and no closed form solution exists in the literature. We employ the use of doubly stochastic stopping times to incorporate the randomness about the time of death and employ a suitable change of measure to facilitate the valuation of survival benefit, there by adapting the payoff of the GAO in terms of the payoff of a basket call option. We derive general price bounds for GAOs by utilizing a conditioning approach for the lower bound and arithmetic-geometric mean inequality for the upper bound. The theory is then applied to affine models to present some very interesting formulae for the bounds under the affine set up. Numerical examples are furnished and benchmarked against Monte Carlo simulations to estimate the price of a GAO for a variety of affine processes governing the evolution of mortality and the interest rate.
The portfolio optimization problem is a basic problem of financial analysis. In the study, an optimization model for constructing an options portfolio with a certain payoff function has been proposed. The model is formulated as an integer linear programming problem and includes an objective payoff function and a system of constraints. In order to demonstrate the performance of the proposed model, we have constructed the portfolio on the European call and put options of Taiwan Futures Exchange. The optimum solution was obtained using the MATLAB software. Our approach is quite general and has the potential to design options portfolios on financial markets.
We develop an expansion approach for the pricing of European quanto options written on LIBOR rates (of a foreign currency). We derive the dynamics of the system of foreign LIBOR rates under the domestic forward measure and then consider the price of the quanto option. In order to take the skew/smile effect observed in fixed income and FX markets into account, we consider local volatility models for both the LIBOR and the FX rate. Because of the structure of the local volatility function, a closed form solution for quanto option prices does not exist. Using expansions around a proxy related to log-normal dynamics, we derive approximation formulas of Black--Scholes type for the price, that have the benefit of giving very rapid numerical procedures. Our expansion formulas have the major advantage that they allow for an accurate estimation of the error, using Malliavin calculus, which is directly related to the maturity of the option, the payoff, and the level and curvature of the local volatility function. These expansions also illustrate the impact of the quanto drift adjustment, while the numerical experiments show an excellent accuracy.
127 - Miquel Montero 2007
Continuous-time random walks are a well suited tool for the description of market behaviour at the smallest scale: the tick-to-tick evolution. We will apply this kind of market model to the valuation of perpetual American options: derivatives with no maturity that can be exercised at any time. Our approach leads to option prices that fulfil financial formulas when canonical assumptions on the dynamics governing the process are made, but it is still suitable for more exotic market conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا