Do you want to publish a course? Click here

Expansion formulas for European quanto options in a local volatility FX-LIBOR model

111   0   0.0 ( 0 )
 Publication date 2018
  fields Financial
and research's language is English




Ask ChatGPT about the research

We develop an expansion approach for the pricing of European quanto options written on LIBOR rates (of a foreign currency). We derive the dynamics of the system of foreign LIBOR rates under the domestic forward measure and then consider the price of the quanto option. In order to take the skew/smile effect observed in fixed income and FX markets into account, we consider local volatility models for both the LIBOR and the FX rate. Because of the structure of the local volatility function, a closed form solution for quanto option prices does not exist. Using expansions around a proxy related to log-normal dynamics, we derive approximation formulas of Black--Scholes type for the price, that have the benefit of giving very rapid numerical procedures. Our expansion formulas have the major advantage that they allow for an accurate estimation of the error, using Malliavin calculus, which is directly related to the maturity of the option, the payoff, and the level and curvature of the local volatility function. These expansions also illustrate the impact of the quanto drift adjustment, while the numerical experiments show an excellent accuracy.



rate research

Read More

A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools.
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been successfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
This paper focuses on the pricing of continuous geometric Asian options (GAOs) under a multifactor stochastic volatility model. The model considers fast and slow mean reverting factors of volatility, where slow volatility factor is approximated by a quadratic arc. The asymptotic expansion of the price function is assumed, and the first order price approximation is derived using the perturbation techniques for both floating and fixed strike GAOs. Much simplified pricing formulae for the GAOs are obtained in this multifactor stochastic volatility framework. The zeroth order term in the price approximation is the modified Black-Scholes price for the GAOs. This modified price is expressed in terms of the Black-Scholes price for the GAOs. The accuracy of the approximate option pricing formulae is established, and the model parameter is also estimated by capturing the volatility smiles.
A new paradigm recently emerged in financial modelling: rough (stochastic) volatility, first observed by Gatheral et al. in high-frequency data, subsequently derived within market microstructure models, also turned out to capture parsimoniously key stylized facts of the entire implied volatility surface, including extreme skews that were thought to be outside the scope of stochastic volatility. On the mathematical side, Markovianity and, partially, semi-martingality are lost. In this paper we show that Hairers regularity structures, a major extension of rough path theory, which caused a revolution in the field of stochastic partial differential equations, also provides a new and powerful tool to analyze rough volatility models.
This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the related collocated local volatility model (CLV) are explored. Finally, a simple analytical expression for the Dupire local volatility derived from the option prices modelled by stochastic collocation is given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا