Do you want to publish a course? Click here

Quasienergies and dynamics of superconducting qubit in time-modulated field

350   0   0.0 ( 0 )
 Added by Gor Abovyan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the dynamics of a superconducting qubit and the phenomenon of multiorder Rabi oscillations in the presence of a time-modulated external field. Such a field is also presented as a bichromatic field consisting of two spectral components, which are symmetrically detuned from the qubit resonance frequency. This approach leads to obtaining qualitative quantum effects beyond those for the case of monochromatic excitation of qubits. We calculate Floquet states and quasienergies of the composite system superconducting qubit plus time-modulated field for various resonant regimes. We analyze the dependence of quasienergies from the amplitude of an external field, demonstrating the zeros of difference between quasienergies. We show that, as a rule, populations of qubit states exhibit aperiodic oscillations, but we demonstrate the specific important regimes in which dynamics of populations becomes periodically regular.



rate research

Read More

A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring and validate the foundations of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new route for implementing what Schrodinger termed quantum steering-harnessing action at a distance to manipulate quantum states via measurement.
We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ~ 60 mu s by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that previous planar transmon coherence times are limited by surface losses from two-level system (TLS) defects residing at or near interfaces. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators which is inconsistent with the predicted TLS model.
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit device performance. Furthermore, autocorrelation in these time fluctuations introduces challenges for obtaining representative measures of T1 for process optimization and device screening. These T1 fluctuations are often attributed to time varying coupling of the qubit to defects, putative two level systems (TLSs). In this work, we develop a technique to probe the spectral and temporal dynamics of T1 in single junction transmons by repeated T1 measurements in the frequency vicinity of the bare qubit transition, via the AC-Stark effect. Across 10 qubits, we observe strong correlations between the mean T1 averaged over approximately nine months and a snapshot of an equally weighted T1 average over the Stark shifted frequency range. These observations are suggestive of an ergodic-like spectral diffusion of TLSs dominating T1, and offer a promising path to more rapid T1 characterization for device screening and process optimization.
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors without destroying coherence by using quantum error correcting codes [1]. The simplest of these are the three-qubit codes, which map a one-qubit state to an entangled three-qubit state and can correct any single phase-flip or bit-flip error of one of the three qubits, depending on the code used [2]. Here we demonstrate both codes in a superconducting circuit by encoding a quantum state as previously shown [3,4], inducing errors on all three qubits with some probability, and decoding the error syndrome by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate which corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate, known as a conditional-conditional NOT (CCNot) or Toffoli gate, using an interaction with the third excited state of a single qubit, in 63 ns. We find 85pm1% fidelity to the expected classical action of this gate and 78pm1% fidelity to the ideal quantum process matrix. Using it, we perform a single pass of both quantum bit- and phase-flip error correction with 76pm0.5% process fidelity and demonstrate the predicted first-order insensitivity to errors. Concatenating these two codes and performing them on a nine-qubit device would correct arbitrary single-qubit errors. When combined with recent advances in superconducting qubit coherence times [5,6], this may lead to scalable quantum technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا