Do you want to publish a course? Click here

Lattices in products of trees and a theorem of H.C. Wang

169   0   0.0 ( 0 )
 Added by Shahar Mozes
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We study cocompact lattices with dense projections in a product $G_1 times G_2$ of locally compact groups and show, under the assumption that each $G_i$ is a closed subgroup of the automorphism group $Aut(T_i)$ of a regular tree satisfying certain local transitivity conditions, that such a lattice is contained in only finitely many discrete subgroups of $G_1 times G_2$.



rate research

Read More

We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observe that fundamental groups of Haken 3-manifolds with non-empty boundary have asymptotic dimension 2.
250 - Alden Walker 2013
We give an algorithm to compute stable commutator length in free products of cyclic groups which is polynomial time in the length of the input, the number of factors, and the orders of the finite factors. We also describe some experimental and theoretical applications of this algorithm.
The far-reaching work of Dahmani-Guirardel-Osin and recent work of Clay-Mangahas-Margalit provide geometric approaches to the study of the normal closure of a subgroup (or a collection of subgroups)in an ambient group $G$. Their work gives conditions under which the normal closure in $G$ is a free product. In this paper we unify their results and simplify and significantly shorten the proof of the Dahmani-Guirardel-Osin theorem.
174 - Thomas Haettel 2016
We prove that any action of a higher rank lattice on a Gromov-hyperbolic space is elementary. More precisely, it is either elliptic or parabolic. This is a large generalization of the fact that any action of a higher rank lattice on a tree has a fixed point. A consequence is that any quasi-action of a higher rank lattice on a tree is elliptic, i.e. it has Mannings property (QFA). Moreover, we obtain a new proof of the theorem of Farb-Kaimanovich-Masur that any morphism from a higher rank lattice to a mapping class group has finite image, without relying on the Margulis normal subgroup theorem nor on bounded cohomology. More generally, we prove that any morphism from a higher rank lattice to a hierarchically hyperbolic group has finite image. In the Appendix, Vincent Guirardel and Camille Horbez deduce rigidity results for morphisms from a higher rank lattice to various outer automorphism groups.
Let $T_1, T_2$ be regular trees of degrees $d_1, d_2 geq 3$. Let also $Gamma leq mathrm{Aut}(T_1) times mathrm{Aut}(T_2)$ be a group acting freely and transitively on $VT_1 times VT_2$. For $i=1$ and $2$, assume that the local action of $Gamma$ on $T_i$ is $2$-transitive; if moreover $d_i geq 7$, assume that the local action contains $mathrm{Alt}(d_i)$. We show that $Gamma$ is irreducible, unless $(d_1, d_2)$ belongs to an explicit small set of exceptional values. This yields an irreducibility criterion for $Gamma$ that can be checked purely in terms of its local action on a ball of radius~$1$ in $T_1$ and $T_2$. Under the same hypotheses, we show moreover that if $Gamma$ is irreducible, then it is hereditarily just-infinite, provided the local action on $T_i$ is not the affine group $mathbf F_5 rtimes mathbf F_5^*$. The proof of irreducibility relies, in several ways, on the Classification of the Finite Simple Groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا