Do you want to publish a course? Click here

Hyperbolic rigidity of higher rank lattices

175   0   0.0 ( 0 )
 Added by Thomas Haettel
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We prove that any action of a higher rank lattice on a Gromov-hyperbolic space is elementary. More precisely, it is either elliptic or parabolic. This is a large generalization of the fact that any action of a higher rank lattice on a tree has a fixed point. A consequence is that any quasi-action of a higher rank lattice on a tree is elliptic, i.e. it has Mannings property (QFA). Moreover, we obtain a new proof of the theorem of Farb-Kaimanovich-Masur that any morphism from a higher rank lattice to a mapping class group has finite image, without relying on the Margulis normal subgroup theorem nor on bounded cohomology. More generally, we prove that any morphism from a higher rank lattice to a hierarchically hyperbolic group has finite image. In the Appendix, Vincent Guirardel and Camille Horbez deduce rigidity results for morphisms from a higher rank lattice to various outer automorphism groups.

rate research

Read More

214 - Cornelia Drutu 2006
This paper overviews recent developments in the classification up to quasi-isometry of finitely generated groups, and more specifically of relatively hyperbolic groups.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
184 - Bruce Kleiner , Urs Lang 2018
The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank $n ge 2$ in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) $n$-cycles of $r^n$ volume growth; prime examples include $n$-cycles associated with $n$-quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT(0) spaces of asymptotic rank $n$ extends to a class of $(n-1)$-cycles in the Tits boundaries.
We prove that there are only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups.
We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observe that fundamental groups of Haken 3-manifolds with non-empty boundary have asymptotic dimension 2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا