No Arabic abstract
To study electronic transport through chaotic quantum dots, there are two main theoretical approachs. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and non-linear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.
Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, transport moments reduce to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders higher than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.
We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assumption that the Landauer-Butticker scattering matrix for chaotic ballistic cavities can be modelled by the circular ensembles of Random Matrix Theory (RMT). The starting points are the finite-n formulae that we recently discovered (Mezzadri and Simm, J. Math. Phys. 52 (2011), 103511). Our analysis includes all the symmetry classes beta=1,2,4; in addition, it applies to the transmission eigenvalues of Andreev billiards, whose symmetry classes were classified by Zirnbauer (J. Math. Phys. 37 (1996), 4986-5018) and Altland and Zirnbauer (Phys. Rev. B. 55 (1997), 1142-1161). Where applicable, our results are in complete agreement with the semiclassical theory of mesoscopic systems developed by Berkolaiko et al. (J. Phys. A.: Math. Theor. 41 (2008), 365102) and Berkolaiko and Kuipers (J. Phys. A: Math. Theor. 43 (2010), 035101 and New J. Phys. 13 (2011), 063020). Our approach also applies to the Selberg-like integrals. We calculate the first two terms in their asymptotic expansion explicitly.
We give a generalization of the random matrix ensembles, including all lassical ensembles. Then we derive the joint density function of the generalized ensemble by one simple formula, which give a direct and unified way to compute the density functions for all classical ensembles and various kinds of new ensembles. An integration formula associated with the generalized ensemble is also given. We also give a classification scheme of the generalized ensembles, which will include all classical ensembles and some new ensembles which were not considered before.
Using the methods originally developed for Random Matrix Theory we derive an exact mathematical formula for number variance (introduced in [4]) describing a rigidity of particle ensembles with power-law repulsion. The resulting relation is consequently compared with the relevant statistics of the single-vehicle data measured on the Dutch freeway A9. The detected value of an inverse temperature, which can be identified as a coefficient of a mental strain of car drivers, is then discussed in detail with the respect to the traffic density and flow.
The speed of growth for a particular stochastic growth model introduced by Borodin and Ferrari in [Comm. Math. Phys. 325 (2014), 603-684], which belongs to the KPZ anisotropic universality class, was computed using multi-time correlations. The model was recently generalized by Toninelli in [arXiv:1503.05339] and for this generalization the stationary measure is known but the time correlations are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression of the speed of growth from the prescribed dynamics.