Do you want to publish a course? Click here

Structural evolution and kinetics in Cu-Zr Metallic Liquids

109   0   0.0 ( 0 )
 Added by Logan Ward
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The atomic structure of the supercooled liquid has often been discussed as a key source of glass formation in metals. The presence of icosahedrally-coordinated clusters and their tendency to form networks have been identified as one possible structural trait leading to glass forming ability in the Cu-Zr binary system. In this work, we show that this theory is insufficient to explain glass formation at all compositions in that binary system. Instead, we propose that the formation of ideally-packed clusters at the expense of atomic arrangements with excess or deficient free volume can explain glass-forming by a similar mechanism. We show that this behavior is reflected in the structural relaxation of a metallic glass during constant pressure cooling and the time evolution of structure at a constant volume. We then demonstrate that this theory is sufficient to explain slowed diffusivity in compositions across the range of Cu-Zr metallic glasses.



rate research

Read More

In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1 0 0) and Ni (1 0 0) crystal substrate for comparison, only the Cu crystal deposited layer with the fcc structure can be obtained. When depositing the Cu atoms on the Zr substrate at 300 K, the crystal structure was formed, which indicates that except the suitable substrate, low temperature is also a key factor for the amorphous structure formation. The Cu liquid quenching from 2000 K to 100 K were also simulated with the cooling rate 1012 K/s to form the Cu glass film in this work. The Cu metallic glass from the two different processes (physical vapor deposition and rapid thermal quenching from liquid) revealed the same radial distribution function and X-ray diffraction pattern, but the different microstructure from the coordination number and Voronoi tessellation analysis.
Structural transformations at interfaces are of profound fundamental interest as complex examples of phase transitions in low-dimensional systems. Despite decades of extensive research, no compelling evidence exists for structural transformations in high-angle grain boundaries in elemental systems. Here we show that the critical impediment to observations of such phase transformations in atomistic modeling has been rooted in inadequate simulation methodology. The proposed new methodology allows variations in atomic density inside the grain boundary and reveals multiple grain boundary phases with different atomic structures. Reversible first-order transformations between such phases are observed by varying temperature or injecting point defects into the boundary region. Due to the presence of multiple metastable phases, grain boundaries can absorb significant amounts of point defects created inside the material by processes such as irradiation. We propose a novel mechanism of radiation damage healing in metals which may guide further improvements in radiation resistance of metallic materials through grain boundary engineering.
78 - Yang Tong 2018
Mechanical behaviors of bulk metallic glasses (BMGs) including heterogeneous and homogeneous deformation are interpreted by phenomenological shear transformation zones (STZs) model. Currently, information about STZs, i.e. size and density, is only extracted by fitting model equation to the data obtained from macroscopic mechanical tests. This is inadequate since structural features of STZs theory cannot be assessed. Here, we develop anisotropic pair distribution function (PDF) method for directly characterizing mechanical response of deformation defects. Our results reveal the physical picture of deformation defects in BMGs and also provide direct experimental observation of a link between mechanical deformation and intrinsic properties of deformation defects in BMGs.
Transparent pure and Cu-doped (2.5, 5 and 10 at. %) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to this Cu substitutionally replacing cations in TiO2.
Cu${}_{50-x}$Zr${}_{x}$ (x = 50, 54, 60 and 66.6) polycrystalline alloys were prepared by arc-melting. The crystal structure of the ingots has been examined by X-ray diffraction. Non-equilibrium martensitic phases with monoclinic structure were detected in all the alloys except Cu${}_{33.4}$Zr${}_{66.6}$. Temperature dependencies of electrical resistivity in the temperature range of T = 4 - 300 K have been measured as well as room temperature values of Hall coefficients and thermal conductivity. Electrical resistivity demonstrates anomalous behavior. At the temperatures lower than 20 K, their temperature dependencies are non-monotonous with pronounced minima. At elevated temperatures they have sufficiently non-linear character which cannot be described within framework of the standard Bloch--Gr{u}neisen model. We propose generalized Bloch--Gr{u}neisen model with variable Debye temperature which describes experimental resistivity dependencies with high accuracy. We found that both the electrical resistivity and the Hall coefficients reveal metallic-type conductivity in the Cu-Zr alloys. The estimated values of both the charge carrier mobility and the phonon contribution to thermal and electric conductivity indicate the strong lattice defects and structure disorder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا