Do you want to publish a course? Click here

Magnetic monopole field exposed by electrons

287   0   0.0 ( 0 )
 Added by Armand B\\'ech\\'e
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied spin ice provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space diffraction helps to understand the dynamics of the electron-monopole system without the complexity of a solid state system. The use of a simple object such as a magnetized needle will allow various areas of physics to use the general dynamical effects of monopole fields without requiring a monopole particle or specific solids which have internal monopole-like properties. The experiment performed here shows that even without a true magnetic monopole particle, the theoretical background on monopoles serves as a basis for experiments and can be applied to efficiently create electron vortices. Various predictions about angular momentum and general field effects can readily be studied using the available equipment. This realization provides insights for the scientific community on how to detect magnetic monopoles in high energy collisions, cosmological processes, or novel materials.



rate research

Read More

A new static and azimuthally symmetric magnetic monopolelike object, which looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the monopole position and vanishes at the origin, is discussed. This monopolelike object is inspired by an analysis of an exactly solvable model of Berrys phase in the parameter space. A salient feature of the monopolelike potential ${cal A}_{k}(r,theta)$ with a magnetic charge $e_{M}$ is that the Dirac string is naturally described by the potential ${cal A}_{k}(r,theta)$, and the origin of the Dirac string and the geometrical center of the monopole are displaced in the coordinate space. The smooth topology change from a monopole to a dipole takes place if the Dirac string, when coupled to the electron, becomes unobservable by satisfying the Dirac quantization condition. The electric charge is then quantized even if the monopole changes to a dipole near the origin. In the transitional region from a monopole to a dipole, a half-monopole with a magnetic charge $e_{M}/2$ appears.
372 - Hao Zhou , Yongmao Pei , Hu Huang 2013
Nano/micro-scale mechanical properties of multiferroic materials can be controlled by the external magnetic or electric field due to the coupling interaction. For the first time, a modularized multi-field nanoindentation apparatus for carrying out testing on materials in external magnetostatic/electrostatic field is constructed. Technical issues, such as the application of magnetic/electric field and the processes to diminish the interference between external fields and the other parts of the apparatus, are addressed. Tests on calibration specimen indicate the feasibility of the apparatus. The load-displacement curves of ferromagnetic, ferroelectric and magnetoelectric materials in the presence/absence of external fields reveal the small-scale magnetomechanical and electromechanical coupling, showing as the Delta-E and Delta-H effects, i.e. the magnetic/electric field induced changes in the apparent elastic modulus and indentation hardness.
The dependence on applied electric field ($0 - 40$ kV/cm) of the scintillation light produced by fast electrons and $alpha$ particles stopped in liquid helium in the temperature range of 0.44 K to 3.12 K is reported. For both types of particles, the reduction in the intensity of the scintillation signal due to the applied field exhibits an apparent temperature dependence. Using an approximate solution of the Debye-Smoluchowski equation, we show that the apparent temperature dependence for electrons can be explained by the time required for geminate pairs to recombine relative to the detector signal integration time. This finding indicates that the spatial distribution of secondary electrons with respect to their geminate partners possesses a heavy, non-Gaussian tail at larger separations, and has a dependence on the energy of the primary ionization electron. We discuss the potential application of this result to pulse shape analysis for particle detection and discrimination.
By measuring the angles at which the Landau levels overlap in tilted magnetic fields (the coincidence method), we determine the splitting of the conduction-band valleys in high-mobility two-dimensional (2D) electrons confined to AlAs quantum wells. The data reveal that, while the valleys are nearly degenerate in the absence of magnetic field, they split as a function of perpendicular magnetic field. The splitting appears to depend primarily on the magnitude of the perpendicular component of the magnetic field, suggesting electron-electron interaction as its origin.
Consider an electron drifting in a gas toward a collection electrode. A common misconception is that the electron produces a detectable signal only upon arrival at the electrode. In fact, the situation is quite the opposite. The electron induces a detectable current in the electrode as soon as it starts moving through the gas. This induced current vanishes when the electron arrives at the plate. To illustrate this phenomenon experimentally, we use a gas-filled parallel plate ionization chamber and a collimated $^{241}$Am alpha source, which produces a track of a fixed number of ionization electrons at a constant distance from the collection electrode. We find that the detected signal from the ionization chamber grows with the electron drift distance, as predicted by the model of charge induction, and in conflict with the idea that electrons are detectable upon arrival at the collection plate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا