Do you want to publish a course? Click here

Multi-field nanoindentation apparatus for measuring local mechanical properties of materials in external magnetic and electric fields

375   0   0.0 ( 0 )
 Added by Hao Zhou
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nano/micro-scale mechanical properties of multiferroic materials can be controlled by the external magnetic or electric field due to the coupling interaction. For the first time, a modularized multi-field nanoindentation apparatus for carrying out testing on materials in external magnetostatic/electrostatic field is constructed. Technical issues, such as the application of magnetic/electric field and the processes to diminish the interference between external fields and the other parts of the apparatus, are addressed. Tests on calibration specimen indicate the feasibility of the apparatus. The load-displacement curves of ferromagnetic, ferroelectric and magnetoelectric materials in the presence/absence of external fields reveal the small-scale magnetomechanical and electromechanical coupling, showing as the Delta-E and Delta-H effects, i.e. the magnetic/electric field induced changes in the apparent elastic modulus and indentation hardness.



rate research

Read More

Optical properties of graphene are explored by using the generalized tight-binding model. The main features of spectral structures, the form, frequency, number and intensity, are greatly enriched by the complex relationship among the interlayer atomic interactions, the magnetic quantization and the Coulomb potential energy. Absorption spectra have the shoulders, asymmetric peaks and logarithmic peaks, coming from the band-edge states of parabolic dispersions, the constant-energy loops and the saddle points, respectively. The initial forbidden excitation region is only revealed in even-layer AA stacking systems. Optical gaps and special structures can be generated by an electric field. The delta-function-like structures in magneto-optical spectra, which present the single, twin and double peaks, are associated with the symmetric, asymmetric and splitting Landau-level energy spectra, respectively. The single peaks due to the non-tilted Dirac cones exhibit the nearly uniform intensity. The AAB stacking possesses more absorption structures, compared to the other stackings. The diverse magneto-optical selection rules are mainly determined by the well-behaved, perturbed and undefined Landau modes. The frequent anti-crossings in the magnetic- and electric-field-dependent energy spectra lead to the increase of absorption peaks and the reduced intensities. Part of theoretical calculations are consistent with the experimental measurements, and the others need further detailed examinations.
80 - X.L. Sun , T. Tolba , G.F. Cao 2018
We report on the performance of silicon photomultiplier (SiPM) light sensors operating in electric field strength up to 30 kV/cm and at a temperature of 149K, relative to their performance in the absence of an external electric field. The SiPM devices used in this study show stable gain, photon detection efficiency, and rates of correlated pulses, when exposed to external fields, within the estimated uncertainties. No observable physical damage to the bulk or surface of the devices was caused by the exposure.
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance and bandgap tuning in atomically-thin materials, can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
We study the binding energies and optical properties of direct and indirect excitons in monolayers and double layer heterostructures of Xenes: silicene, germanene, and stanene. It is demonstrated that an external electric field can be used to tune the eigenenergies and optical properties of excitons by changing the effective mass of charge carriers. The Schr{o}dinger equation with field-dependent exciton reduced mass is solved by using the Rytova-Keldysh (RK) potential for direct excitons, while both the RK and Coulomb potentials are used for indirect excitons. It is shown that for indirect excitons, the choice of interaction potential can cause huge differences in the eigenenergies at large electric fields and significant differences even at small electric fields. Furthermore, our calculations show that the choice of material parameters has a significant effect on the binding energies and optical properties of direct and indirect excitons. These calculations contribute to the rapidly growing body of research regarding the excitonic and optical properties of this new class of two dimensional semiconductors.
267 - Yuri Kornyushin 2010
Concentrated electric field and its energy in materials, containing nanofibers, are discussed. It is shown that the electric field in the vicinity of the end of a fiber is proportional to the external applied field and to the fiber length, whilst it is inversely proportional to the fiber diameter. Specific electrostatic energy of a fiber in a sample under the action of external applied field is calculated. This energy appears to be negative and proportional to the ratio of the fiber length to its diameter. This means that longer fibers are more stable than the shorter ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا