No Arabic abstract
One of the major challenges in design of Wireless Sensor Networks (WSNs) is to reduce energy consumption of sensor nodes to prolong lifetime of finite-capacity batteries. In this paper, we propose Energy-efficient Adaptive Scheme for Transmission (EAST) in WSNs. EAST is an IEEE 802.15.4 standard compliant. In this scheme, open-loop is used for temperature-aware link quality estimation and compensation. Whereas, closed-loop feedback process helps to divide network into three logical regions to minimize overhead of control packets. Threshold on transmitter power loss (RSSIloss) and current number of nodes (nc(t)) in each region help to adapt transmit power level (Plevel) according to link quality changes due to temperature variation. Evaluation of propose scheme is done by considering mobile sensor nodes and reference node both static and mobile. Simulation results show that propose scheme effectively adapts transmission Plevel to changing link quality with less control packets overhead and energy consumption as compared to classical approach with single region in which maximum transmitter Plevel assigned to compensate temperature variation.
In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.
Wireless Sensor Networks research and demand are now in full expansion, since people came to understand these are the key to a large number of issues in industry, commerce, home automation, healthcare, agriculture and environment, monitoring, public safety etc. One of the most challenging research problems in sensor networks research is power awareness and power-saving techniques. In this masters thesis, we have studied one particular power-saving technique, i.e. frequency scaling. In particular, we analysed the close relationship between clock frequencies in a microcontroller and several types of constraints imposed on these frequencies, e.g. by other components of the microcontroller, by protocol specifications, by external factors etc. Among these constraints, we were especially interested in the ones imposed by the timer service and by the serial ports transmission rates. Our efforts resulted in a microcontroller configuration management tool which aims at assisting application programmers in choosing microcontroller configurations, in function of the particular needs and constraints of their application.
Ultra-Reliable Low-Latency Communications (URLLC) is a novel feature of 5G cellular systems. To satisfy strict URLLC requirements for uplink data transmission, the specifications of 5G systems introduce the grant-free channel access method. According to this method, a User Equipment (UE) performs packet transmission without requesting channel resources from a base station (gNB). With the grant-free channel access, the gNB configures the uplink transmission parameters in a long-term time scale. Since the channel quality can significantly change in time and frequency domains, the gNB should select robust transmission parameters to satisfy the URLLC requirements. Many existing studies consider fixed robust uplink transmission parameter selection that allows satisfying the requirements even for UEs with poor channel conditions. However, the more robust transmission parameters are selected, the lower is the network capacity. In this paper, we propose an adaptive algorithm that selects the transmission parameters depending on the channel quality based on the signal-to-noise ratio statistics analysis at the gNB. Simulation results obtained with NS-3 show that the algorithm allows meeting the URLLC latency and reliability requirements while reducing the channel resource consumption more than twice in comparison with the fixed transmission parameters selection.
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Clustering Hierarchy (LEACH) routing protocol. Fundamental objective of our consideration is to analyze, how these ex- tended routing protocols work in order to optimize lifetime of network nodes and how quality of routing protocols is improved for WSNs. Furthermore, this paper also emphasizes on some issues experienced by LEACH and also explains how these issues are tackled by other enhanced routing protocols from classi- cal LEACH. We analytically compare the features and performance issues of each hierarchal routing protocol. We also simulate selected clustering routing protocols for our study in order to elaborate the enhancement achieved by ameliorate routing protocols.
Wireless Sensors Networks (WSNs) have a big application in heterogeneous networks. In this paper, we propose and evaluate Advanced Low-Energy Adaptive Clustering Hierarchy (Ad-LEACH) which is static clustering based heterogeneous routing protocol. The complete network field is first divided into static clusters and then in each cluster separate Ad-LEACH protocol is applied. Our proposed protocol is inherited from LEACH with a cluster head selection criteria of Distributed Energy-Efficient Clustering (DEEC). This enables Ad-LEACH to cope with the heterogeneous nature of nodes. Due to small static clusters, each node reduces its broadcast message power because it only has to cover a small area. We perform simulations in MATLAB to check the efficiency of Ad-LEACH. The Simulation results show that Ad-LEACH outperforms LEACH and DEEC in energy efficiency as well as throughput.