No Arabic abstract
In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.
Wireless Sensors Networks (WSNs) have a big application in heterogeneous networks. In this paper, we propose and evaluate Advanced Low-Energy Adaptive Clustering Hierarchy (Ad-LEACH) which is static clustering based heterogeneous routing protocol. The complete network field is first divided into static clusters and then in each cluster separate Ad-LEACH protocol is applied. Our proposed protocol is inherited from LEACH with a cluster head selection criteria of Distributed Energy-Efficient Clustering (DEEC). This enables Ad-LEACH to cope with the heterogeneous nature of nodes. Due to small static clusters, each node reduces its broadcast message power because it only has to cover a small area. We perform simulations in MATLAB to check the efficiency of Ad-LEACH. The Simulation results show that Ad-LEACH outperforms LEACH and DEEC in energy efficiency as well as throughput.
In Delay Tolerant Networks (DTNs), two-hop routing compromises energy versus delay more conveniently than epidemic routing. Literature provides comprehensive results on optimal routing policies for mobile nodes with homogeneous mobility, often neglecting signaling costs. Routing policies are customarily computed by means of fluid approximation techniques, which assure solutions to be optimal only when the number of nodes is infinite, while they provide a coarse approximation otherwise. This work addresses heterogeneous mobility patterns and multiple wireless transmission technologies; moreover, we explicitly consider the beaconing/signaling costs to support routing and the possibility for nodes to discard packets after a local time. We theoretically characterize the optimal policies by deriving their formal properties. Such analysis is leveraged to define two algorithmic approaches which allow to trade off optimality with computational efficiency. Theoretical bounds on the approximation guarantees of the proposed algorithms are derived. We then experimentally evaluated them in realistic scenarios of multi-class DTNs.
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Clustering Hierarchy (LEACH) routing protocol. Fundamental objective of our consideration is to analyze, how these ex- tended routing protocols work in order to optimize lifetime of network nodes and how quality of routing protocols is improved for WSNs. Furthermore, this paper also emphasizes on some issues experienced by LEACH and also explains how these issues are tackled by other enhanced routing protocols from classi- cal LEACH. We analytically compare the features and performance issues of each hierarchal routing protocol. We also simulate selected clustering routing protocols for our study in order to elaborate the enhancement achieved by ameliorate routing protocols.
The underwater acoustic channel is one of the most challenging communication channels. Due to periodical tidal and daily climatic variation, underwater noise is periodically fluctuating, which result in the periodical changing of acoustic channel quality in long-term. Also, time-variant channel quality leads to routing failure. Routing protocols with acoustic channel estimation, namely underwater channel-aware routing protocols are recently proposed to maintain the routing performance. However, channel estimation algorithms for these routing protocols are mostly linear and rarely consider periodicity of acoustic channels. In this paper, we introduce acoustic channel estimation based on nearest neighbor regression for underwater acoustic networks. We extend nearest neighbor regression for SNR (Signal-to-Noise Ratio) time series prediction, providing an outstanding prediction accuracy for intricately periodical and fluctuating received SNR time series. Moreover, we propose a quick search algorithm and use statistical storage compression to optimize the time and space complexity of the algorithm. In contrast with linear methods, this algorithm significantly improves channel prediction accuracy (over three times at most) on both simulation and sea trial data sets. With this channel estimation method, we then propose a Depth-Based Channel-Aware Routing protocol (DBCAR). Taking advantage of depth-greedy forwarding and channel-aware reliable communication, DBCAR has an outstanding network performance on packet delivery ratio, average energy consumption and average transmission delay which is validated through extensive simulations.
In this paper, we propose a new Quality Link Metric (QLM), ``Inverse Expected Transmission Count (InvETX) in Optimized Link State Routing (OLSR) protocol. Then we compare performance of three existing QLMs which are based on loss probability measurements; Expected Transmission Count (ETX), Minimum Delay (MD), Minimum Loss (ML) in Static Wireless Multi-hop Networks (SWMhNs). A novel contribution of this paper is enhancement in conventional OLSR to achieve high efficiency in terms of optimized routing load and routing latency. For this purpose, first we present a mathematical framework, and then to validate this frame work, we select three performance parameters to simulate default and enhanc