Do you want to publish a course? Click here

Magnetic properties and Mott transition in the square-lattice Hubbard model with frustration

129   0   0.0 ( 0 )
 Added by Atsushi Yamada
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic properties and Mott transition of the Hubbard model on the square lattice with frustration are studied at half-filling and zero temperature by the variational cluster approximation. When the on-site repulsion $U$ is large, magnetically disordered state is realized in highly frustrated region between the Neel and collinear phases, and no imcommensurate magnetic states are found there. As for the Mott transition, in addition to the Mott gap and double occupancy, which clarify the nature of the transition, the structure of the self-energy in the spectral representation is studied in detail below and above the Mott transition point. The spectral structure of the self-energy is almost featureless in the metallic phase, but clear single dispersion, leading to the Mott gap, appears in the Mott insulator phase.



rate research

Read More

We employ the Hartree-Fock approximation to identify the magnetic ground state of the Hubbard model on a frustrated square lattice. We investigate the phase diagram as a function of the Coulomb repulsions strength $U$, and the ratio $t/t$ between the nearest and next nearest neighbor hoppings $t$ and $t$. At half-filling and for a sufficiently large $U$, an antiferromagnetic chiral spin density wave order with nonzero spin chirality emerges as the ground state in a wide regime of the phase diagram near $t/t=1/sqrt{2}$, where the Fermi surface is well-nested for both $(pi,pi)$ and $(pi,0)/(0,pi)$ wave vectors. This triple-${bf Q}$ chiral phase is sandwiched by a single-${bf Q}$ N{e}el phase and a double-${bf Q}$ coplanar spin-vortex crystal phase, at smaller and larger $t/t$, respectively. The energy spectrum in the chiral spin density wave phase consists of four pairs of degenerate bands. These give rise to two pairs of Dirac cones with the same chirality at the point $({pi over 2},{piover 2})$ of the Brillouin zone. We demonstrate that the application of a diagonal strain induces a $d_{xy}$-wave next nearest neighbor hopping which, in turn, opens gaps in the two Dirac cones with opposite masses. As a result, four pairs of well-separated topologically-nontrivial bands emerge, and each pair of those contributes with a Chern number $pm1$. At half-filling, this leads to a zero total Chern number and renders the topologically-notrivial properties observable only in the ac response regime. Instead, we show that at $3/4$ filling, the triple-${bf Q}$ chiral phase yields a Chern insulator exhibiting the quantum anomalous Hall effect.
In this article, we discuss the non-trivial collective charge excitations (plasmons) of the extended square-lattice Hubbard model. Using a fully non-perturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly-correlated phase. The momentum-resolved charge susceptibility is also computed on the basis of the Euclidean charge density-density correlator. In agreement with previous EDMFT studies, we find that at large strength of the electron-electron interaction, the plasmon dispersion develops two branches.
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at light hole doping $deltalesssim 10%$, we find a significant difference between strong and intermediate couplings. Notably, at intermediate coupling an unusual metallic state emerges, with short ranged spin correlations but long ranged spin-chirality order. Moreover, no clear Fermi surface or wave-vector is observed. These features disappear on increasing interaction strength or on further doping. At strong coupling, the 120 degree magnetic order of the insulating magnet persists for light doping, and produces hole pockets with a well defined Fermi surface. On further doping, $delta approx 10%sim 20%$ SDW order and coherent hole Fermi pockets are found at both strong and intermediate coupling. At even higher doping $delta gtrsim 20%$, the SDW order is suppressed and the spin-singlet Cooper pair correlations are simultaneously enhanced. We interpret this as the onset of superconductivity on suppressing magnetic order. We also briefly comment on the strong particle hole asymmetry of the model, and contrast electron versus hole doping.
A new quantum spin model with frustration, the `Union Jack model on the square lattice, is analyzed using spin-wave theory. For small values of the frustrating coupling $alpha$, the system is N{ e}el ordered as usual, while for large $alpha$ the frustration is found to induce a canted phase. The possibility of an intermediate spin-liquid phase is discussed.
Using a cluster extension of the dynamical mean-field theory (CDMFT) we map out the magnetic phase diagram of the anisotropic square lattice Hubbard model with nearest-neighbor intrachain $t$ and interchain $t_{perp}$ hopping amplitudes at half-filling. A fixed value of the next-nearest-neighbor hopping $t=-t_{perp}/2$ removes the nesting property of the Fermi surface and stabilizes a paramagnetic metal phase in the weak-coupling regime. In the isotropic and moderately anisotropic regions, a growing spin entropy in the metal phase is quenched out at a critical interaction strength by the onset of long-range antiferromagnetic (AF) order of preformed local moments. It gives rise to a first-order metal-insulator transition consistent with the Mott-Heisenberg picture. In contrast, a strongly anisotropic regime $t_{perp}/tlesssim 0.3$ displays a quantum critical behavior related to the continuous transition between an AF metal phase and the AF insulator. Hence, within the present framework of CDMFT, the opening of the charge gap is magnetically driven as advocated in the Slater picture. We also discuss how the lattice-anisotropy-induced evolution of the electronic structure on a metallic side of the phase diagram is tied to the emergence of quantum criticality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا