No Arabic abstract
The spectroscopic modes of multiferroic BiFeO$_3$ provide detailed information about the very small anisotropy and Dzyaloshinskii-Moriya (DM) interactions responsible for the long-wavelength, distorted cycloid below $TN = 640$ K. A microscopic model that includes two DM interactions and easy-axis anisotropy predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field applied along a cubic axis. While only six modes are optically active in zero field, all modes at the cycloidal wavevector are activated by a magnetic field. The three magnetic domains of the cycloid are degenerate in zero field but one domain has lower energy than the other two in nonzero field. Measurements imply that the higher-energy domains are depopulated above about 6 T and have a maximum critical field of 16 T, below the critical field of 19 T for the lowest-energy domain. Despite the excellent agreement with the measured spectroscopic frequencies, some discrepancies with the measured spectroscopic intensities suggest that other weak interactions may be missing from the model.
Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above a critical field H_c that depends on the orientation m of the field. We show that H_c(m) has a maximum when oriented along a cubic diagonal parallel to the electric polarization P and a minimum in the equatorial plane normal to P when two magnetic domains with the highest critical fields are degenerate. The measured critical field along a cubic axis is about 19 T but H_c is predicted to vary by as much as 2.5 T above and below this value. The orientational dependence of H_c(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic domains.
We report the direct observation of a resonance mode in the lowest-energy optic phonon very near the zone center around (111) in the multiferroic BiFeO$_3$ using neutron scattering methods. The phonon scattering intensity is enhanced when antiferromagnetic (AFM) order sets in at T$_N = 640$~K, and it increases on cooling. This resonance is confined to a very narrow region in energy-momentum space where no spin-wave excitation intensity is expected, and it can be modified by an external magnetic field. Our results suggest the existence of a novel coupling between the lattice and spin fluctuations in this multiferroic system in which the spin-wave excitations are mapped onto the lattice vibrations via the Dzyaloshinskii-Moriya (DM) interaction.
Multiferroics permit the magnetic control of the electric polarization and electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO$_3$ over the gigahertz--terahertz frequency range. Supporting theory attributes the observed unidirectional transmission to the spin-current driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.
In this article the mechanism of the linear magnetoelectric (ME) effect in the rhombohedral multiferroic BiFeO$_3$ is considered. The study is based on the symmetry approach of the GinzburgLandau type, in which polarization, antiferrodistortion, and antiferromagnetic momentum vectors are viewed as ordering parameters. We demonstrate that the linear ME effect in BFO is caused by reorientation of the antiferrodistortion vector in either electric or magnetic field. The numerical estimations, which show quantitative agreement with the results of the recent measurements in film samples, have been performed. A possibility of significant enhancement of the magnetoelectric effect by applying an external static electric field has been investigated. The considered approach is promising for explaining the high values of the ME effect in composite films and heterostructures with BFO.