Do you want to publish a course? Click here

Extreme spin squeezing for photons

70   0   0.0 ( 0 )
 Added by Morgan Mitchell
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply spin-squeezing techniques to identify and quantify highly multi-partite photonic entanglement in polarization-squeezed light. We consider a practical single-mode scenario, and find that Wineland-criterion polarization squeezing implies entanglement of a macroscopic fraction of the total photons. A Glauber-theory computation of the observable N-photon density matrix, with N up to 100, finds that N-partite entanglement is observable despite losses and without post-selection. We estimate that existing detectors could observe $sim1000$-partite entanglement from a few dB of polarization squeezing.



rate research

Read More

This paper reviews quantum spin squeezing, which characterizes the sensitivity of a state with respect to an SU(2) rotation, and is significant for both entanglement detection and high-precision metrology. We first present various definitions of spin squeezing parameters, explain their origin and properties for typical states, and then discuss spin-squeezed states produced with the Ising and the nonlinear twisting Hamiltonians. Afterwards, we explain correlations and entanglement in spin-squeezed states, as well as the relations between spin squeezing and quantum Fisher information, where the latter plays a central role in quantum metrology. We also review the applications of spin squeezing for detecting quantum chaos and quantum phase transitions, as well as the influence of decoherence on spin-squeezed states. Finally, several experiments are discussed including: producing spin squeezed states via particle collisions in Bose-Einstein condensates, mapping photon squeezing onto atomic ensembles, and quantum non-demolition measurements.
We implement the squeezing operation as a genuine quantum gate, deterministically and reversibly acting `online upon an input state no longer restricted to the set of Gaussian states. More specifically, by applying an efficient and robust squeezing operation for the first time to non-Gaussian states, we demonstrate a two-way conversion between a particle-like single-photon state and a wave-like superposition of coherent states. Our squeezing gate is reliable enough to preserve the negativities of the corresponding Wigner functions. This demonstration represents an important and necessary step towards hybridizing discrete and continuous quantum protocols.
260 - M. Bhattacharya 2015
In this article we present a concrete proposal for spin squeezing the ultracold ground state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, non-interacting molecule with angular momentum greater than $1/2$. Starting from an experimentally relevant effective Hamiltonian, we identify a parameter regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993)], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T Ng and P. T. Leung, Phys. Rev. A 63, 055601 (2001)], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989)]. To support our conclusions, we provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.
We investigate many-body spin squeezing dynamics in an XXZ model with interactions that fall off with distance $r$ as $1/r^alpha$ in $D=2$ and $3$ spatial dimensions. In stark contrast to the Ising model, we find a broad parameter regime where spin squeezing comparable to the infinite-range $alpha=0$ limit is achievable even when interactions are short-ranged, $alpha>D$. A region of collective behavior in which optimal squeezing grows with system size extends all the way to the $alphatoinfty$ limit of nearest-neighbor interactions. Our predictions, made using the discrete truncated Wigner approximation (DTWA), are testable in a variety of experimental cold atomic, molecular, and optical platforms.
We demonstrate two simple theorems about squeezing induced by bilinear spin-spin interactions that conserve spin parity -- including a vast majority of quantum spin models implemented by state-of-the-art quantum simulators. In particular we show that squeezing captures the first form of quantum correlations which are produced: 1) at equilibrium, by adiabatically turning on the spin-spin interactions starting from a factorized state aligned with an external, arbitrary field; 2) away from equilibrium, by evolving unitarily the same state with the interacting Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا