Do you want to publish a course? Click here

Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing

250   0   0.0 ( 0 )
 Added by Jacques Vincent
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental study of the longitudinal relaxation time ($T_1$) of the electron spin associated with single nitrogen-vacancy (NV) defects hosted in nanodiamonds (ND). We first show that $T_1$ decreases over three orders of magnitude when the ND size is reduced from 100 to 10 nm owing to the interaction of the NV electron spin with a bath of paramagnetic centers lying on the ND surface. We next tune the magnetic environment by decorating the ND surface with Gd$^{3+}$ ions and observe an efficient $T_{1}$-quenching, which demonstrates magnetic noise sensing with a single electron spin. We estimate a sensitivity down to $approx 14$ electron spins detected within 10 s, using a single NV defect hosted in a 10-nm-size ND. These results pave the way towards $T_1$-based nanoscale imaging of the spin density in biological samples.



rate research

Read More

A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a function of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.
We investigate spin and optical properties of individual nitrogen-vacancy centers located within 1-10 nm from the diamond surface. We observe stable defects with a characteristic optically detected magnetic resonance spectrum down to lowest depth. We also find a small, but systematic spectral broadening for defects shallower than about 2 nm. This broadening is consistent with the presence of a surface paramagnetic impurity layer [Tisler et al., ACS Nano 3, 1959 (2009)] largely decoupled by motional averaging. The observation of stable and well-behaved defects very close to the surface is critical for single-spin sensors and devices requiring nanometer proximity to the target.
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vacancy (NV) centers in diamond. We discuss two central challenges of the field: First, the creation of highly-coherent, shallow NV centers less than 10 nm below the surface of single-crystal diamond. Second, the fabrication of tip-like photonic nanostructures that enable efficient fluorescence collection and can be used for scanning probe imaging based on color centers with nanoscale resolution.
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60 to 70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.
We present an experimental and theoretical study of electronic spin decoherence in ensembles of nitrogen-vacancy (NV) color centers in bulk high-purity diamond at room temperature. Under appropriate conditions, we find ensemble NV spin coherence times (T_2) comparable to that of single NVs, with T_2 > 600 microseconds for a sample with natural abundance of 13C and paramagnetic impurity density ~10^15 cm^(-3). We also observe a sharp decrease of the coherence time with misalignment of the static magnetic field relative to the NV electronic spin axis, consistent with theoretical modeling of NV coupling to a 13C nuclear spin bath. The long coherence times and increased signal-to-noise provided by room-temperature NV ensembles will aid many applications of NV centers in precision magnetometry and quantum information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا