Do you want to publish a course? Click here

Coherence of Nitrogen-Vacancy Electronic Spin Ensembles in Diamond

137   0   0.0 ( 0 )
 Added by Paul Stanwix
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an experimental and theoretical study of electronic spin decoherence in ensembles of nitrogen-vacancy (NV) color centers in bulk high-purity diamond at room temperature. Under appropriate conditions, we find ensemble NV spin coherence times (T_2) comparable to that of single NVs, with T_2 > 600 microseconds for a sample with natural abundance of 13C and paramagnetic impurity density ~10^15 cm^(-3). We also observe a sharp decrease of the coherence time with misalignment of the static magnetic field relative to the NV electronic spin axis, consistent with theoretical modeling of NV coupling to a 13C nuclear spin bath. The long coherence times and increased signal-to-noise provided by room-temperature NV ensembles will aid many applications of NV centers in precision magnetometry and quantum information.



rate research

Read More

The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular diffusion near the diamond surface compared to that in bulk, an observation consistent with present models of the microscopic structure of a fluid close to a solid interface.
We introduce a microwave-assisted spectroscopy technique to determine the relative concentrations of nitrogen vacancy (NV) centers in diamond that are negatively-charged (NV${}^-$) and neutrally-charged (NV${}^0$), and present its application to studying spin-dependent ionization in NV ensembles and enhancing NV-magnetometer sensitivity. Our technique is based on selectively modulating the NV${}^-$ fluorescence with a spin-state-resonant microwave drive to isolate, in-situ, the spectral shape of the NV${}^-$ and NV${}^0$ contributions to an NV-ensemble samples fluorescence. As well as serving as a reliable means to characterize charge state ratio, the method can be used as a tool to study spin-dependent ionization in NV ensembles. As an example, we applied the microwave technique to a high-NV-density diamond sample and found evidence for a new spin-dependent ionization pathway, which we present here alongside a rate-equation model of the data. We further show that our method can be used to enhance the contrast of optically-detected magnetic resonance (ODMR) on NV ensembles and may lead to significant sensitivity gains in NV magnetometers dominated by technical noise sources, especially where the NV${}^0$ population is large. With the high-NV-density diamond sample investigated here, we demonstrate up to a 4.8-fold enhancement in ODMR contrast. The techniques presented here may also be applied to other solid-state defects whose fluorescence can be selectively modulated by means of a microwave drive. We demonstrate this utility by applying our method to isolate room-temperature spectral signatures of the V2-type silicon vacancy from an ensemble of V1 and V2 silicon vacancies in 4H silicon carbide.
160 - R. Giri , F. Gorrini , C. Dorigoni 2017
We studied the spin depolarization of ensembles of nitrogen-vacancy (NV) centers in nitrogen-rich single crystal diamonds. We found a strong dependence of the evolution of the polarized state in the dark on the concentration of NV centers. At low excitation power, we observed a simple exponential decay profile in the low-density regime and a paradoxical inverted exponential profile in the high-density regime. At higher excitation power, we observed complex behavior, with an initial sharp rise in luminescence signal after the preparation pulse followed by a slower exponential decay. Magnetic field and excitation laser power-dependent measurements suggest that the rapid initial increase of the luminescence signal is related to recharging of the nitrogen-vacancy centers (from neutral to negatively charged) in the dark. The slow relaxing component corresponds to the longitudinal spin relaxation of the NV ensemble. The shape of the decay profile reflects the interplay between two mechanisms: the NV charge state conversion in the dark and the longitudinal spin relaxation. These mechanisms, in turn, are influenced by ionization, recharging and polarization dynamics during excitation. Interestingly, we found that charge dynamics are dominant in NV-dense samples even at very feeble excitation power. These observations may be important for the use of ensembles of NV centers in precession magnetometry and sensing applications.
Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the door to practical applications of NV sensors for ZF magnetic sensing, such as ZF nuclear magnetic resonance, and investigation of magnetic fields in biological systems.
The nitrogen-vacancy (NV) centre in diamond has emerged as a candidate to non-invasively hyperpolarise nuclear spins in molecular systems to improve the sensitivity of nuclear magnetic resonance (NMR) experiments. Several promising proof of principle experiments have demonstrated small-scale polarisation transfer from single NVs to hydrogen spins outside the diamond. However, the scaling up of these results to the use of a dense NV ensemble, which is a necessary prerequisite for achieving realistic NMR sensitivity enhancement, has not yet been demonstrated. In this work, we present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale, and characterise the challenges in achieving useful polarisation enhancement. In the most favourable example of the interaction with hydrogen in a solid state target, a maximum polarisation transfer rate of $approx 7500$ spins per second per NV is measured, averaged over an area containing order $10^6$ NVs. Reduced levels of polarisation efficiency are found for liquid state targets, where molecular diffusion limits the transfer. Through analysis via a theoretical model, we find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا