Do you want to publish a course? Click here

Nonlocal imaging by conditional averaging of random reference measurements

135   0   0.0 ( 0 )
 Added by Ling-An Wu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the nonlocal imaging of an object by conditional averaging of the random exposure frames of a reference detector, which only sees the freely propagating field from a thermal light source. A bucket detector, synchronized with the reference detector, records the intensity fluctuations of an identical beam passing through the object mask. These fluctuations are sorted according to their values relative to the mean, then the reference data in the corresponding time-bins for a given fluctuation range are averaged, to produce either positive or negative images. Since no correlation calculations are involved, this correspondence imaging technique challenges our former interpretations of ghost imaging. Compared with conventional correlation imaging or compressed sensing schemes, both the number of exposures and computation time are greatly reduced, while the visibility is much improved. A simple statistical model is presented to explain the phenomenon.



rate research

Read More

97 - Jianming Wen 2011
A recent thermal ghost imaging experiment by Wus group constructed positive and negative images using a novel algorithm. This algorithm allows to form the images with use of partial measurements from the reference arm, even which never passes through the object, conditioned on the object arm. In this paper, we present a simple theory which explains the experimental observation, and provides an in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images through such an algorithm is not bounded by the standard value 1/3. In fact, it can ideally grow up to unity (with reduced imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal light, but also mimics a bandpass filter to remove the constant background such that the visibility or imaging contrast is improved. We further show that conditioned on one still object present in the test arm, it is possible to construct its image by sampling the available reference data.
116 - Cong Zhang , Wenlin Gong , 2012
For conventional imaging, shaking of the imaging system or the target leads to the degradation of imaging resolution. In this work, the influence of the targets shaking to fourier-transform ghost diffraction (FGD) is investigated. The analytical results, which are backed up by numerical simulation and experiments, demonstrate that the quiver of target has no effect on the resolution of FGD, thus the targets imaging with high spatial resolution can be always achieved by phase-retrieval method from the FGD patterns. This approach can be applied in high-precision imaging systems, to overcome the influence of the systems shaking to imaging resolution.
549 - T. Yang 2013
Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi-frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2,$GHz is obtained for (positive) detuning values between zero and $1.5,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.
Based on point spread function (PSF) engineering and astigmatism due to a pair of cylindrical lenses, a novel compressed imaging mechanism is proposed to achieve single-shot incoherent 3D imaging. The speckle-like PSF of the imaging system is sensitive to axial shift, which makes it feasible to reconstruct a 3D image by solving an optimization problem with sparsity constraint. With the experimentally calibrated PSFs, the proposed method is demonstrated by a synthetic 3D point object and real 3D object, and the images in different axial slices can be reconstructed faithfully. Moreover, 3D multispectral compressed imaging is explored with the same system, and the result is rather satisfactory with a synthetic point object. Because of the inherent compatibility between the compression in spectral and axial dimensions, the proposed mechanism has the potential to be a unified framework for multi-dimensional compressed imaging.
We address realistic schemes for the generation of non-Gaussian states of light based on conditional intensity measurements performed on correlated bipartite states. We consider both quantum and classically correlated states and different kind of detection, comparing the resulting non Gaussianity parameters upon varying the input energy and the detection efficiency. We find that quantum correlations generally lead to higher non Gaussianity, at least in the low energy regime. An experimental implementation feasible with current technology is also suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا