No Arabic abstract
A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core) detector array inside the existing Tibet-III air shower array. The first step of YAC, called YAC-I, consists of 16 plastic scintillator units (4 rows times 4 columns) each with an area of 40 cm * 50 cm which is used to check hadronic interaction models used in AS simulations. A Monte Carlo study shows that YAC-I can record high energy electromagnetic component in the core region of air showers induced by primary particles of several tens TeV energies where the primary composition is directly measured by space experiments. It may provide a direct check of the hadronic interaction models currently used in the air shower simulations in the corresponding energy region. In present paper, the method of the observation and the sensitivity of the characteristics of the observed events to the different interaction models are discussed.
A new hybrid experiment has been started by AS{gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large underground water Cherenkov muon detector (MD). In this paper, the capability of the measurement of the chemical components (proton, helium and iron) with use of the (Tibet-III+YAC-II) is investigated by means of an extensive Monte Carlo simulation in which the secondary particles are propagated through the (Tibet-III+YAC-II) array and an artificial neural network (ANN) method is applied for the primary mass separation. Our simulation shows that the new installation is powerful to study the chemical compositions, in particular, to obtain the primary energy spectrum of the major component at the knee.
A Monte Carlo study for single baryon reconstruction method is presented based on two-body baryonic decays of charmonium, $jJ/psi$, $psi(3686)rightarrowXibarXi$ at BESIII experiment. As a result, we find that the detection efficiency for single baryon reconstruction method can be increased by a factor of $sim$4 relative to the traditional full-reconstruction method. It indicates that single baryon reconstruction method could be used in the other two-body baryonic decays of charmonium, such as $J/psi$, $psi(3686)rightarrowXi(1530)barXi(1530)$, $Xi(1530)barXi$, whose expected yields are estimated based on single baryon reconstruction method. The expected uncertainties for the measurements of the angular distribution parameters are also discussed.
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^circ$ N, 4300 m above sea level, atmospheric depth: 606 g/m$^2$) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thick and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to $10^{6}$ MIPs. The first phase of this experiment, named YAC-I, consists of 16 YAC detectors each having the size 40 cm $times$ 50 cm and distributing in a grid with an effective area of 10 m$^{2}$. YAC-I is used to check hadronic interaction models. The second phase of the experiment, called YAC-II, consists of 124 YAC detectors with coverage about 500 m$^2$. The inner 100 detectors of 80 cm $times $ 50 cm each are deployed in a 10 $times$ 10 matrix from with a 1.9 m separation and the outer 24 detectors of 100 cm $times$ 50 cm each are distributed around them to reject non-core events whose shower cores are far from the YAC-II array. YAC-II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of proton, helium and iron nuclei between 5$times$$10^{13}$ eV and $10^{16}$ eV covering the knee and also being connected with direct observations at energies around 100 TeV. We present the design and performance of YAC-II in this paper.
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for $gamma$-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m$^{2}$ by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of $sim$2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.
We investigate reversibility violations in the Hybrid Monte Carlo algorithm. Those violations are inevitable when computers with finite numerical precision are being used. In SU(2) gauge theory, we study the dependence of observables on the size of the reversibility violations. While we cannot find any statistically significant deviation in observables related to the simulated physical model, algorithmic specific observables signal an upper bound for reversibility violations below which simulations appear unproblematic. This empirically derived condition is independent of problem size and parameter values, at least in the range of parameters studied here.