Do you want to publish a course? Click here

Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models

223   0   0.0 ( 0 )
 Added by Stephanie S Zhang
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

There has been growing interest in recent years in Q-matrix based cognitive diagnosis models. Parameter estimation and respondent classification under these models may suffer due to identifiability issues. Non-identifiability can be described by a partition separating attribute profiles into groups of those with identical likelihoods. Marginal identifiability concerns the identifiability of individual attributes. Maximum likelihood estimation of the proportion of respondents within each equivalence class is consistent, making possible a new measure of assessment quality reporting the proportion of respondents for whom each individual attribute is marginally identifiable. Arising from this is a new posterior-based classification method adjusting for non-identifiability.



rate research

Read More

110 - Chenchen Ma , Gongjun Xu 2021
Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models that are widely used in modern educational, psychological, social and biological sciences. A key component of CDMs is a binary $Q$-matrix characterizing the dependence structure between the items and the latent attributes. Additionally, researchers also assume in many applications certain hierarchical structures among the latent attributes to characterize their dependence. In most CDM applications, the attribute-attribute hierarchical structures, the item-attribute $Q$-matrix, the item-level diagnostic model, as well as the number of latent attributes, need to be fully or partially pre-specified, which however may be subjective and misspecified as noted by many recent studies. This paper considers the problem of jointly learning these latent and hierarchical structures in CDMs from observed data with minimal model assumptions. Specifically, a penalized likelihood approach is proposed to select the number of attributes and estimate the latent and hierarchical structures simultaneously. An efficient expectation-maximization (EM) algorithm and a latent structure recovery algorithm are developed, and statistical consistency theory is also established under mild conditions. The good performance of the proposed method is illustrated by simulation studies and a real data application in educational assessment.
90 - Chenchen Ma , Gongjun Xu 2021
Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the naive Chi-squared test through comprehensive simulations and an educational assessment dataset.
Cognitive diagnosis models (CDMs) are useful statistical tools to provide rich information relevant for intervention and learning. As a popular approach to estimate and make inference of CDMs, the Markov chain Monte Carlo (MCMC) algorithm is widely used in practice. However, when the number of attributes, $K$, is large, the existing MCMC algorithm may become time-consuming, due to the fact that $O(2^K)$ calculations are usually needed in the process of MCMC sampling to get the conditional distribution for each attribute profile. To overcome this computational issue, motivated by Culpepper and Hudson (2018), we propose a computationally efficient sequential Gibbs sampling method, which needs $O(K)$ calculations to sample each attribute profile. We use simulation and real data examples to show the good finite-sample performance of the proposed sequential Gibbs sampling, and its advantage over existing methods.
The bifactor model and its extensions are multidimensional latent variable models, under which each item measures up to one subdimension on top of the primary dimension(s). Despite their wide applications to educational and psychological assessments, this type of multidimensional latent variable models may suffer from non-identifiability, which can further lead to inconsistent parameter estimation and invalid inference. The current work provides a relatively complete characterization of identifiability for the linear and dichotomous bifactor models and the linear extended bifactor model with correlated subdimensions. In addition, similar results for the two-tier models are also developed. Illustrative examples are provided on checking model identifiability through inspecting the factor loading structure. Simulation studies are reported that examine estimation consistency when the identifiability conditions are/are not satisfied.
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covariance functions, the PC or PLS scores need not be independent or even uncorrelated. We use copulas to model the dependence. Our method is semiparametric; the marginal densities are estimated nonparametrically by kernel smoothing and the copula is modeled parametrically. We focus on Gaussian and t-copulas, but other copulas could be used. The strong performance of our methodology is demonstrated through simulation, real data examples, and asymptotic properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا