Do you want to publish a course? Click here

Origin of magnetism and quasiparticles properties in Cr-doped TiO$_2$

301   0   0.0 ( 0 )
 Added by Fabiana Pieve Da
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Combining LSDA+$U$ and an analysis of superexchange interactions beyond DFT, we describe the magnetic ground states in rutile and anatase Cr-doped TiO$_2$. In parallel, we correct our LSDA+$U$ ground state through GW corrections ($GW$@LSDA+$U$) that reproduce the position of impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange.



rate research

Read More

We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
88 - Yu Li , Zhonghao Liu , Zhuang Xu 2019
A series of Sr(Co$_{1-x}$Ni$_x$)$_2$As$_2$ single crystals was synthesized allowing a comprehensive phase diagram with respect to field, temperature, and chemical substitution to be established. Our neutron diffraction experiments revealed a helimagnetic order with magnetic moments ferromagnetically (FM) aligned in the $ab$ plane and a helimagnetic wavevector of $q=(0,0,0.56)$ for $x$ = 0.1. The combination of neutron diffraction and angle-resolved photoemission spectroscopy (ARPES) measurements show that the tuning of a flat band with $d_{x^2-y^2}$ orbital character drives the helimagnetism and indicates the possibility of a quantum order-by-disorder mechanism.
Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At $5%$ of Te doping at Sb site thermal conductivity is suppressed from $sim 250$ W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20$%$ Cr/Co doping the thermal conductivity remains $sim 30$ W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of $kappa$ with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit ($ZTsim 0.05$ at $sim 100$ K) in Fe(Sb$_{0.9}$Te$_{0.1}$)$_2$.
We use the density functional theory and lattice dynamics calculations to investigate the properties of potassium superoxide KO$_2$ in which spin, orbital, and lattice degrees of freedom are interrelated and determine the low-temperature phase. After calculating phonon dispersion relations in the high-temperature tetragonal $I4/mmm$ structure, we identify a soft phonon mode leading to the monoclinic $C2/c$ symmetry and optimize the crystal geometry resulting from this mode. Thus we reveal a displacive character of the structural transition with the group-subgroup relation between the tetragonal and monoclinic phases. We compare the electronic structure of KO$_2$ with antiferromagnetic spin order in the tetragonal and monoclinic phases. We emphasize that realistic treatment of the electronic structure requires including the local Coulomb interaction $U$ in the valence orbitals of the O$^-_2$ ions. The presence of the `Hubbard $U$ leads to the gap opening at the Fermi energy in the tetragonal structure without orbital order but with weak spin-orbit interaction. We remark that the gap opening in the tetragonal phase could also be obtained when the orbital order is initiated in the calculations with a realistic value of $U$. Finally, we show that the local Coulomb interactions and the finite lattice distortion, which together lead to the orbital order via the Jahn-Teller effect, are responsible for the enhanced insulating gap in the monoclinic structure.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا