Do you want to publish a course? Click here

Fast and Quasideterministic Single Ion Source from a Dipole-Blockaded Atomic Ensemble

217   0   0.0 ( 0 )
 Added by Kevin Weatherill Dr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a fast and Quasideterministic protocol for the production of single ions and electrons from a cloud of laser cooled atoms. The approach is based on a two-step process where first a single Rydberg atom is photo-excited from a dipole-blockade configuration and subsequently ionized by an electric field pulse. We theoretically describe these excitation-ionization cycles via dynamical quantum maps and observe a rich behavior of the ionization dynamics as a function of laser Rabi frequency, pulse duration and particle number. Our results show that a fast sequential heralded production of single charged particles is achievable even from an unstructured and fluctuating atomic ensemble.



rate research

Read More

The non-linear and non-local effects in atomic Rydberg media under electromagnetically induced transparency (EIT) make it a versatile platform for fundamental studies and applications in quantum information. In this paper, we study the dynamics of a Rydberg-EIT system in an ensemble that allows for more than one Rydberg excitation in the propagation direction. The density of two-level atoms is such that transient superradiant effects occur. We experimentally observe a cross-over between coherent collective emission (`flash) of two-level atoms to a Rydberg dressed regime (dressed flash) under EIT condition. The complex dynamics are characterised using both intensity and time correlation measurements. We show that while steady-state EIT gives a second order correlation $g^{(2)}=0.79pm 0.04$, the Rydberg-dressed flash exhibits anti-bunching down to $0.2pm0.04$.
We analyze a similar scheme for producing light-mediated entanglement between atomic ensembles, as first realized by Julsgaard, Kozhekin and Polzik [Nature {bf 413}, 400 (2001)]. In the standard approach to modeling the scheme, a Holstein-Primakoff approximation is made, where the atomic ensembles are treated as bosonic modes, and is only valid for short interaction times. In this paper, we solve the time evolution without this approximation, which extends the region of validity of the interaction time. For short entangling times, we find this produces a state with similar characteristics as a two-mode squeezed state, in agreement with standard predictions. For long entangling times, the state evolves into a non-Gaussian form, and the two-mode squeezed state characteristics start to diminish. This is attributed to more exotic types of entangled states being generated. We characterize the states by examining the Fock state probability distributions, Husimi $Q$ distributions, and non-local entanglement between the ensembles. We compare and connect several quantities obtained using the Holstein-Primakoff approach and our exact time evolution methods.
Quantum light-matter interfaces, based upon ensembles of cold atoms or other quantum emitters, are a vital platform for diverse quantum technologies and the exploration of fundamental quantum phenomena. Most of our understanding and modeling of such systems are based upon macroscopic theories, wherein the atoms are treated as a smooth, quantum polarizable medium. Although it is known that such approaches ignore a number of microscopic details, such as the granularity of atoms, dipole-dipole interactions and multiple scattering of light, the consequences of such effects in practical settings are usually mixed with background macroscopic effects and difficult to quantify. In this work we demonstrate a time-domain method to measure microscopically-driven optical effects in a background-free fashion, by transiently suppressing the macroscopic dynamics. With the method, we reveal a microscopic dipolar dephasing mechanism that generally limits the lifetime of the optical spin-wave order in a random gas. Theoretically, we show the dephasing effect emerges from the strong resonant dipole interaction between close-by atomic pairs.
We describe a high-resolution spectroscopy method, in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest are recorded efficiently with high signal-to-noise ratios. Spectra display symmetric line shapes without stray-light background from spectroscopy probes. We employ this method on a $^{25}$Mg$^+$ ion to measure one, two, and three-photon transition frequencies from the 3S ground state to the 3P, 3D, and 4P excited states, respectively. Our results are relevant for astrophysics and searches for drifts of fundamental constants. Furthermore, the method can be extended to other transitions, isotopes, and species. The currently achieved fractional frequency uncertainty of $5 times 10^{-9}$ is not limited by the method.
418 - D. G. Norris 2012
The spontaneous creation and persistence of ground-state coherence in an ensemble of intracavity Rb atoms has been observed as a quantum beat. Our system realizes a quantum eraser, where the detection of a first photon prepares a superposition of ground-state Zeeman sublevels, while detection of a second erases the stored information. Beats appear in the time-delayed photon-photon coincidence rate (intensity correlation function). We study the beats theoretically and experimentally as a function of system parameters, and find them remarkably robust against perturbations such as spontaneous emission. Although beats arise most simply through single-atom-mediated quantum interference, scattering pathways involving pairs of atoms interfere also in our intracavity experiment. We present a detailed model which identifies all sources of interference and accounts for experimental realities such as imperfect pre-pumping of the atomic beam, cavity birefringence, and the transit of atoms across the cavity mode.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا