Do you want to publish a course? Click here

Interpreting the observed UV continuum slopes of high-redshift galaxies

261   0   0.0 ( 0 )
 Added by Stephen Wilkins
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observed UV continuum slope of star forming galaxies is strongly affected by the presence of dust. Its observation is then a potentially valuable diagnostic of dust attenuation, particularly at high-redshift where other diagnostics are currently inaccesible. Interpreting the observed UV continuum slope in the context of dust attenuation is often achieved assuming the empirically calibrated Meurer et al. (1999) relation. Implicit in this relation is the assumption of an intrinsic UV continuum slope ($beta=-2.23$). However, results from numerical simulations suggest that the intrinsic UV continuum slopes of high-redshift star forming galaxies are bluer than this, and moreover vary with redshift. Using values of the intrinsic slope predicted by numerical models of galaxy formation combined with a Calzetti et al. (2000) reddening law we infer UV attenuations ($A_{1500}$) $0.35-0.5,{rm mag}$ ($A_{V}$: $0.14-0.2,{rm mag}$ assuming Calzetti et al. 2000) greater than simply assuming the Meurer relation. This has significant implications for the inferred amount of dust attenuation at very-high ($zapprox 7$) redshift given current observational constraints on $beta$, combined with the Meurer relation, suggest dust attenuation to be virtually zero in all but the most luminous systems.



rate research

Read More

135 - R.J. Bouwens 2009
We use the ultra-deep WFC3/IR data over the HUDF and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z~7. We determine the UV-continuum slope beta in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in beta. For luminous L*(z=3) galaxies, we measure a mean UV-continuum slope beta of -2.0+/-0.2, which is comparable to the beta~-2 derived at similar luminosities at z~5-6. However, for the lower luminosity 0.1L*(z=3) galaxies, we measure a mean beta of -3.0+/-0.2. This is substantially bluer than is found for similar luminosity galaxies at z~4, just 800 Myr later, and even at z~5-6. In principle, the observed beta of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected beta becomes >~-2.7. To produce these very blue betas (i.e., beta~-3), extremely low metallicities and mechanisms to reduce the red nebular emission are likely required. For example, a large escape fraction (i.e., f_{esc}>~0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z~7 galaxies is >~0.3, it may help to explain how galaxies reionize the universe.
185 - V. Buat , S. Noll , D. Burgarella 2012
We study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible. In particular, we search for a UV bump and related implications for dust attenuation determinations. We use data in the CDFS, obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95<z<2.2. When available, Herschel/PACS data (GOODS-Herschel project), and Spitzer/MIPS measurements, are used to estimate the dust emission. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the dust attenuation curve are obtained as outputs of the SED fitting process, together with other parameters linked to the SFH. The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175A is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the LMC supershell region. This amplitude is found to be lower in galaxies with very high SSFRs, and 90% of the galaxies exhibiting a secure bump are at z<1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20$% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve.(abriged)
We study six luminous Lyman-alpha emitters (LAEs) with very blue rest-frame UV continua at $5.7le z le 6.6$. These LAEs have previous HST and Spitzer IRAC observations. Combining our newly acquired HST images, we find that their UV-continuum slopes $beta$ are in a range of $-3.4le beta le -2.6$. Unlike previous, tentative detections of $beta simeq -3$ in photometrically selected, low-luminosity galaxies, our LAEs are spectroscopically confirmed and luminous ($M_{rm UV}<-20$ mag). We model their broadband spectral energy distributions (SEDs), and find that two $betasimeq-2.6pm0.2$ galaxies can be well fitted with young and dust-free stellar populations. However, it becomes increasingly difficult to fit bluer galaxies. We explore further interpretations by including non-zero LyC escape fraction $f_{rm esc}$, very low metallicities, and/or AGN contributions. Assuming $f_{rm esc}simeq0.2$, we achieve the bluest slopes $betasimeq-2.7$ when nebular emission is considered. This can nearly explain the SEDs of two galaxies with $betasimeq-2.8$ and --2.9 ($sigma_{beta}=0.15$). Larger $f_{rm esc}$ values and very low metallicities are not favored by the strong nebular line emission (evidenced by the IRAC flux) or the observed (IRAC 1 - IRAC 2) color. Finally, we find that the $betasimeq-2.9$ galaxy can potentially be well explained by the combination of a very young population with a high $f_{rm esc}$ ($ge0.5$) and an old, dusty population. We are not able to produce two $beta simeq -3.4 pm0.4$ galaxies. Future deep spectroscopic observations are needed to fully understand these galaxies.
163 - R. J. Bouwens 2011
Ultra-deep ACS and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope beta, of star-forming galaxies over a wide range in luminosity (0.1L*(z=3) to 2L*(z=3)) at high redshift (z~7 to z~4). Beta is measured using all ACS and WFC3/IR passbands uncontaminated by Ly_alpha and spectral breaks. Extensive tests show that our beta measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their beta measurements. To reconcile these different results, we simulated both approaches and found that beta measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure beta. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer towards fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero-point to redder colors from z~7 to z~4. This suggests that galaxies are evolving along a well-defined sequence in the L(UV)-color (beta) plane (a star-forming sequence?). Dust appears to be the principal factor driving changes in the UV color (beta) with luminosity. These new larger beta samples lead to improved dust extinction estimates at z~4-7 and confirm that the extinction is still essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (i) excellent agreement between the SFR density at z~4-8 and that inferred from the stellar mass density, and (ii) to higher SSFRs at z>~4, suggesting the SSFR may evolve modestly (by factors of ~2) from z~4-7 to z~2.
We use the semi-analytic models of galaxy formation developed by Kauffmann, White & Guiderdoni to generate predictions for the observed properties of cluster and group galaxies at redshifts between 0 and 0.6. We examine four sets of cosmological initial conditions: low-density CDM models with and without cosmological constant, a flat CDM model and a mixed dark matter model. These models were selected because they span a wide range in cluster formation epoch. The semi-analytic models that we employ are able to follow both the evolution of the dark matter component of clusters and the formation and evolution of the stellar populations of the cluster galaxies. We are thus able to generate model predictions that can be compared directly with the observational data. In the low-density CDM models, clusters form at high red- shift and accrete very little mass at recent times. Our models predict that essentially no evolution in the observed properties of clusters will have occurred by a redshift of 0.6, in direct contradiction with the data. In contrast, in the MDM model, both galaxies and clusters form extremely late. This model predicts evolution which appears to be too extreme to be in agreement with the observations. The flat CDM model, which is intermediate in structure formation epoch, is most successful. This model is able to account for the evolution of the blue fraction of rich clusters with redshift, the relationship between blue fraction and cluster richness at different epochs, and the changes in the distribution of the morphologies of cluster galaxies by a redshift of 0.4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا