No Arabic abstract
We study six luminous Lyman-alpha emitters (LAEs) with very blue rest-frame UV continua at $5.7le z le 6.6$. These LAEs have previous HST and Spitzer IRAC observations. Combining our newly acquired HST images, we find that their UV-continuum slopes $beta$ are in a range of $-3.4le beta le -2.6$. Unlike previous, tentative detections of $beta simeq -3$ in photometrically selected, low-luminosity galaxies, our LAEs are spectroscopically confirmed and luminous ($M_{rm UV}<-20$ mag). We model their broadband spectral energy distributions (SEDs), and find that two $betasimeq-2.6pm0.2$ galaxies can be well fitted with young and dust-free stellar populations. However, it becomes increasingly difficult to fit bluer galaxies. We explore further interpretations by including non-zero LyC escape fraction $f_{rm esc}$, very low metallicities, and/or AGN contributions. Assuming $f_{rm esc}simeq0.2$, we achieve the bluest slopes $betasimeq-2.7$ when nebular emission is considered. This can nearly explain the SEDs of two galaxies with $betasimeq-2.8$ and --2.9 ($sigma_{beta}=0.15$). Larger $f_{rm esc}$ values and very low metallicities are not favored by the strong nebular line emission (evidenced by the IRAC flux) or the observed (IRAC 1 - IRAC 2) color. Finally, we find that the $betasimeq-2.9$ galaxy can potentially be well explained by the combination of a very young population with a high $f_{rm esc}$ ($ge0.5$) and an old, dusty population. We are not able to produce two $beta simeq -3.4 pm0.4$ galaxies. Future deep spectroscopic observations are needed to fully understand these galaxies.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
We report the detection of the most luminous high-redshift Lyman Alpha Emitting galaxy (LAE) yet seen, with log L(Ly alpha) = 43.9 ergs/s. The galaxy -- COSMOS Lyman alpha 1, or COLA1 -- was detected in a search for ultra-luminous LAEs with Hyper Suprime-Cam on the Subaru telescope. It was confirmed to lie at z = 6.593 based on a Lyman alpha line detection obtained from followup spectroscopy with the DEIMOS spectrograph on Keck2. COLA1 is the first very high-redshift LAE to show a multi-component Lyman alpha line profile with a blue wing, which suggests that it could lie in a highly ionized region of the intergalactic medium and could have significant infall. If this interpretation is correct, then ultra-luminous LAEs like COLA1 offer a unique opportunity to determine the properties of the HII regions around these galaxies which will help in understanding the ionization of the z ~ 7 intergalactic medium.
We report results of a deep wide-field narrowband survey for redshift z~5.7 Ly alpha emitters carried out with SuprimeCam on Subaru 8.3-m telescope. Deep narrowband imaging of the SSA22 field through a 120 A bandpass filter centered at 8150 A was combined with deep multicolor RIz SuprimeCam broadband imaging, and BVRZ imaging taken with CFHTs CFH12K camera to select high-redshift galaxy candidates. Spectroscopic observations were made using the new wide-field multi-object DEIMOS spectrograph on Keck for 22 of the 26 candidate objects. Eighteen objects were identified as z~5.7 Lyman alpha emitters, and a further nineteenth candidate was identified based on an LRIS spectrum. At the 3.3 A resolution of the DEIMOS spectra the asymmetric profile for Ly alpha emission with its steep blue fall-off can be clearly seen. We use this to describe the distribution of equivalent widths and the continuum color break properties for z~5.7 Ly alpha galaxies compared with foreground objects. The large majority (>75%) of Ly alpha lines have rest frame equivalent widths less than 240 A and can be understood in terms of young star forming galaxies with a Salpeter initial mass function for the stars. With narrowband selection criteria of I-N > 0.7 and N<25.05 (AB mags) we find a surface density of Ly alpha emitters of 0.03 per square arcminute per (deltaz=0.1) to a limiting flux just under 2e-17 erg/cm2/s. The luminosity function of the Ly alpha emitters is similar to that at lower redshifts to the lowest measurable luminosity of 1e43 ergs/s as is the universal star formation rate based on their continuum properties. We note that the objects are highly structured in both spatial and spectral properties on the angular scale of the fields (~60 Mpc), and that multiple fields will have to be averaged to accurately measure their ensemble properties.
We present the luminosity function (LF) for ultraluminous Ly$alpha$ emitting galaxies (LAEs) at z = 6.6. We define ultraluminous LAEs (ULLAEs) as galaxies with logL(Ly$alpha$) > 43.5 erg s$^{-1}$. We select our main sample using the g, r, i, z, and NB921 observations of a wide-area (30 deg$^2$) Hyper Suprime-Cam survey of the North Ecliptic Pole (NEP) field. We select candidates with g, r, i > 26, NB921 $leq$ 23.5, and NB921 - z $leq$ 1.3. Using the DEIMOS spectrograph on Keck II, we confirm 9 of our 14 candidates as ULLAEs at z = 6.6 and the remaining 5 as an AGN at z = 6.6, two [OIII]$lambda$5007 emitting galaxies at z = 0.84 and z = 0.85, and two non-detections. This emphasizes the need for full spectroscopic follow-up to determine accurate LFs. In constructing the ULLAE LF at z = 6.6, we combine our 9 NEP ULLAEs with two previously discovered and confirmed ULLAEs in the COSMOS field: CR7 and COLA1. We apply rigorous corrections for incompleteness based on simulations. We compare our ULLAE LF at z = 6.6 with LFs at z = 5.7 and z = 6.6 from the literature. Our data reject some previous LF normalizations and power law indices, but they are broadly consistent with others. Indeed, a comparative analysis of the different literature LFs suggests that none is fully consistent with any of the others, making it critical to determine the evolution from z = 5.7 to z = 6.6 using LFs constructed in exactly the same way at both redshifts.
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.