No Arabic abstract
In this study we use a numerical simulation of an artificial coronal mass ejection (CME) to validate a method for calculating propagation directions and kinematical profiles of interplanetary CMEs (ICMEs). In this method observations from heliospheric images are constrained with in-situ plasma and field data at 1 AU. These data are used to convert measured ICME elongations into distance by applying the Harmonic Mean approach that assumes a spherical shape of the ICME front. We use synthetic white-light images, similar as observed by STEREO-A/HI, for three different separation angles between remote and in-situ spacecraft, of 30{deg}, 60{deg}, and 90{deg}. To validate the results of the method they are compared to the apex speed profile of the modeled ICME, as obtained from a top view. This profile reflects the true apex kinematics since it is not affected by scattering or projection effects. In this way it is possible to determine the accuracy of the method for revealing ICME propagation directions and kinematics. We found that the direction obtained by the constrained Harmonic Mean method is not very sensitive to the separation angle (30{deg} sep: phi = W7; 60{deg} sep: phi = W12; 90{deg} sep: phi = W15; true dir.: E0/W0). For all three cases the derived kinematics are in a relatively good agreement with the real kinematics. The best consistency is obtained for the 30{deg} case, while with growing separation angle the ICME speed at 1 AU is increasingly overestimated (30{deg} sep: Delta V_arr ~-50 km/s, 60{deg} sep: Delta V_arr ~+75 km/s, 90{deg} sep: Delta V_arr ~+125 km/s). Especially for future L4/L5 missions the 60{deg} separation case is highly interesting in order to improve space weather forecasts.
Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, this being a matter of serious concern for our modern technologically-dependent society. Development of numerical approaches that would simulate CME generation and propagation through the interplanetary space is an important step towards our capability to predict CME arrival times at Earth and their geo-effectiveness. In this paper, we utilize a data-constrained Gibson--Low (GL) flux rope model to generate CMEs. We derive the geometry of the initial GL flux rope using the Graduated Cylindrical Shell (GCS) method. This method uses multiple viewpoints from STEREO A & B Cor1/Cor2, and SOHO/LASCO C2/C3 coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from the Sun. A flux rope generated in this way is inserted into a quasi-steady global magnetohydrodynamics (MHD) background solar wind flow driven by SDO/HMI line-of-sight magnetogram data, and erupts immediately. Numerical results obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) code are compared with STEREO and SOHO/LASCO coronagraph observations in particular in terms of the CME speed, acceleration, and magnetic field structure.
The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earths orbit (1 AU) to Mars (~ 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts cause the so-called Forbush decrease, which can be de- tected as a reduction of galactic cosmic rays measured on-ground. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earths orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.
The properties of the turbulence which develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the the dissipation mechanisms in the turbulent outflows similar to the one observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.
Magnetic clouds (MCs), as large-scale interplanetary magnetic flux ropes, are usually still connected to the sun at both ends near 1 AU. Many researchers believe that all non-MC interplanetary coronal mass ejections (ICMEs) also have magnetic flux rope structures, which are inconspicuous because the observing spacecraft crosses the flanks of the rope structures. If so, the field lines of non-MC ICMEs should also be usually connected to the Sun on both ends. Then we want to know whether the field lines of most non-MC ICMEs are still connected to the sun at both ends or not. This study examined the counterstreaming suprathermal electron (CSE) signatures of 266 ICMEs observed by the emph{Advanced Composition Explorer} (emph{ACE}) spacecraft from 1998 to 2008 and compared the CSE signatures of MCs and non-MC ICMEs. Results show that only 10 of the 101 MC events ($9.9%$ ) and 75 of the 171 non-MC events ($43.9%$) have no CSEs. Moreover, 21 of the non-MC ICMEs have high CSE percentages (more than $70%$) and show relatively stable magnetic field components with slight rotations, which are in line with the expectations that spacecraft passes through the flank of magnetic flux ropes. So the 21 events may be magnetic flux ropes but the emph{ACE} spacecraft passes through their flanks of magnetic flux ropes. Considering that most other non-MC events have disordered magnetic fields, we suggest that some non-MC ICMEs inherently have disordered magnetic fields, namely have no magnetic flux rope structures.
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.