Do you want to publish a course? Click here

MHD Simulation of the Inner-Heliospheric Magnetic Field

125   0   0.0 ( 0 )
 Added by Tobias Wiengarten
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.



rate research

Read More

An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field-particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov-Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale (MMS) and Solar Probe Plus missions.
A major challenge in solar and heliospheric physics is understanding how highly localized regions, far smaller than 1 degree at the Sun, are the source of solar-wind structures spanning more than 20 degrees near Earth. The Suns atmosphere is divided into magnetically open regions, coronal holes, where solar-wind plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition imply that the solar wind near the HCS, the so-called slow solar wind, originates in closed regions, presumably by the processes of field-line opening or interchange reconnection. Mysteriously, however, slow wind is also often seen far from the HCS. We use high-resolution, three-dimensional magnetohydrodynamic simulations to calculate the dynamics of a coronal hole whose geometry includes a narrow corridor flanked by closed field and which is driven by supergranule-like flows at the coronal-hole boundary. We find that these dynamics result in the formation of giant arcs of closed-field plasma that extend far from the HCS and span tens of degrees in latitude and longitude at Earth, accounting for the slow solar wind observations.
Observations of magnetic clouds (MCs) are consistent with the presence of flux ropes detected in the solar wind (SW) a few days after their expulsion from the Sun as coronal mass ejections (CMEs). Both the textit{in situ} observations of plasma velocity profiles and the increase of their size with solar distance show that MCs are typically expanding structures. The aim of this work is to derive the expansion properties of MCs in the inner heliosphere from 0.3 to 1 AU.We analyze MCs observed by the two Helios spacecraft using textit{in situ} magnetic field and velocity measurements. We split the sample in two subsets: those MCs with a velocity profile that is significantly perturbed from the expected linear profile and those that are not. From the slope of the textit{in situ} measured bulk velocity along the Sun-Earth direction, we compute an expansion speed with respect to the cloud center for each of the analyzed MCs. We analyze how the expansion speed depends on the MC size, the translation velocity, and the heliocentric distance, finding that all MCs in the subset of non-perturbed MCs expand with almost the same non-dimensional expansion rate ($zeta$). We find departures from this general rule for $zeta$ only for perturbed MCs, and we interpret the departures as the consequence of a local and strong SW perturbation by SW fast streams, affecting the MC even inside its interior, in addition to the direct interaction region between the SW and the MC. We also compute the dependence of the mean total SW pressure on the solar distance and we confirm that the decrease of the total SW pressure with distance is the main origin of the observed MC expansion rate. We found that $zeta$ was $0.91pm 0.23$ for non-perturbed MCs while $zeta$ was $0.48pm 0.79$ for perturbed MCs, the larger spread in the last ones being due to the influence of the environment conditions on the expansion.
A shock tube problem is solved numerically by using one-dimensional full particle-in-cell simulations under the condition that a relatively tenuous and weakly magnetized plasma is continuously pushed by a relatively dense and strongly magnetized plasma having supersonic relative velocity. A forward and a reverse shock and a contact discontinuity are self-consistently reproduced. The spatial width of the contact discontinuity increases as the angle between the discontinuity normal and ambient magnetic field decreases. The inner structure of the discontinuity shows different profiles between magnetic field and plasma density, or pressure, which is caused by a non-MHD effect of the local plasma. The region between the two shocks is turbulent. The fluctuations in the relatively dense plasma are compressible and propagating away from the contact discontinuity, although the fluctuations in the relatively tenuous plasma contain both compressible and incompressible components. The source of the compressible fluctuations in the relatively dense plasma is in the relatively tenuous plasma. Only compressible fast mode fluctuations generated in the relatively tenuous plasma are transmitted through the contact discontinuity and propagate in the relatively dense plasma. These fast mode fluctuations are steepened when passing the contact discontinuity. This wave steepening and probably other effects may cause the broadening of the wave spectrum in the very local interstellar medium plasma. The results are discussed in the context of the heliospheric boundary region or heliopause.
Simulation results from a global magnetohydrodynamic model of the solar corona and solar wind are compared with Parker Solar Probe (PSP) observations during its first five orbits. The fully three-dimensional model is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model includes the effects of electron heat conduction, Coulomb collisions, turbulent Reynolds stresses, and heating of protons and electrons via a turbulent cascade. Turbulence transport equations for average turbulence energy, cross helicity, and correlation length are solved concurrently with the mean-flow equations. Boundary conditions at the coronal base are specified using solar synoptic magnetograms. Plasma, magnetic field, and turbulence parameters are calculated along the PSP trajectory. Data from the first five orbits are aggregated to obtain trends as a function of heliocentric distance. Comparison of simulation results with PSP data shows good agreement, especially for mean-flow parameters. Synthetic distributions of magnetic fluctuations are generated, constrained by the local rms turbulence amplitude given by the model. Properties of this computed turbulence are compared with PSP observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا