Do you want to publish a course? Click here

Binary Cyclic codes with two primitive nonzeros

261   0   0.0 ( 0 )
 Added by Tao Feng
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

In this paper, we make some progress towards a well-known conjecture on the minimum weights of binary cyclic codes with two primitive nonzeros. We also determine the Walsh spectrum of $Tr(x^d)$ over $F_{2^{m}}$ in the case where $m=2t$, $d=3+2^{t+1}$ and $gcd(d, 2^{m}-1)=1$.



rate research

Read More

The distance distribution of a code is the vector whose $i^text{th}$ entry is the number of pairs of codewords with distance $i$. We investigate the structure of the distance distribution for cyclic orbit codes, which are subspace codes generated by the action of $mathbb{F}_{q^n}^*$ on an $mathbb{F}_q$-subspace $U$ of $mathbb{F}_{q^n}$. We show that for optimal full-length orbit codes the distance distribution depends only on $q,,n$, and the dimension of $U$. For full-length orbit codes with lower minimum distance, we provide partial results towards a characterization of the distance distribution, especially in the case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly address the distance distribution of a union of optimal full-length orbit codes.
We study orbit codes in the field extension ${mathbb F}_{q^n}$. First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of ${mathbb F}_{q^n}$. We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.
We consider $q$-ary (linear and nonlinear) block codes with exactly two distances: $d$ and $d+delta$. Several combinatorial constructions of optimal such codes are given. In the linear (but not necessary projective) case, we prove that under certain conditions the existence of such linear $2$-weight code with $delta > 1$ implies the following equality of great common divisors: $(d,q) = (delta,q)$. Upper bounds for the maximum cardinality of such codes are derived by linear programming and from few-distance spherical codes. Tables of lower and upper bounds for small $q = 2,3,4$ and $q,n < 50$ are presented.
136 - Sascha Kurz 2020
We classify 8-divisible binary linear codes with minimum distance 24 and small length. As an application we consider the codes associated to nodal sextics with 65 ordinary double points.
236 - Jinquan Luo 2009
Let $q=2^n$, $0leq kleq n-1$, $n/gcd(n,k)$ be odd and $k eq n/3, 2n/3$. In this paper the value distribution of following exponential sums [sumlimits_{xin bF_q}(-1)^{mathrm{Tr}_1^n(alpha x^{2^{2k}+1}+beta x^{2^k+1}+ga x)}quad(alpha,beta,gain bF_{q})] is determined. As an application, the weight distribution of the binary cyclic code $cC$, with parity-check polynomial $h_1(x)h_2(x)h_3(x)$ where $h_1(x)$, $h_2(x)$ and $h_3(x)$ are the minimal polynomials of $pi^{-1}$, $pi^{-(2^k+1)}$ and $pi^{-(2^{2k}+1)}$ respectively for a primitive element $pi$ of $bF_q$, is also determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا