Do you want to publish a course? Click here

Quantum continuous measurements: The stochastic Schroedinger equations and the spectrum of the output

98   0   0.0 ( 0 )
 Added by Alberto Barchielli
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stochastic Schrodinger equation, of classical or quantum type, allows to describe open quantum systems under measurement in continuous time. In this paper we review the link between these two descriptions and we study the properties of the output of the measurement. For simplicity we deal only with the diffusive case. Firstly, we discuss the quantum stochastic Schrodinger equation, which is based on quantum stochastic calculus, and we show how to transform it into the classical stochastic Schrodinger equation by diagonalization of suitable quantum observables, based on the isomorphism between Fock space and Wiener space. Then, we give the a posteriori state, the conditional system state at time $t$ given the output up to that time and we link its evolution to the classical stochastic Schrodinger equation. Finally, we study the output of the continuous measurement, which is a stochastic process with probability distribution given by the rules of quantum mechanics. When the output process is stationary, at least in the long run, the spectrum of the process can be introduced and its properties studied. In particular we show how the Heisenberg uncertainty relations give rise to characteristic bounds on the possible spectra and we discuss how this is related to the typical quantum phenomenon of squeezing. We use a simple quantum system, a two-level atom stimulated by a laser, to discuss the differences between homodyne and heterodyne detection and to explicitly show squeezing and anti-squeezing and the Mollow triplet in the fluorescence spectrum.



rate research

Read More

By starting from the stochastic Schrodinger equation and quantum trajectory theory, we introduce memory effects by considering stochastic adapted coefficients. As an example of a natural non-Markovian extension of the theory of white noise quantum trajectories we use an Ornstein-Uhlenbeck coloured noise as the output driving process. Under certain conditions a random Hamiltonian evolution is recovered. Moreover, we show that our non-Markovian stochastic Schrodinger equations unravel some master equations with memory kernels.
Repeated measurements on a part of a bipartite system strongly affect the other part not measured, whose dynamics is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the latter system is driven into a pure state irrespective of the initial state, provided the spectrum satisfies certain conditions. We here show that even in the case of continuous spectrum an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.
A relation is found between pulsed measurements of the excited state probability of a two-level atom illuminated by a driving laser, and a continuous measurement by a second laser coupling the excited state to a third state which decays rapidly and irreversibly. We find the time between pulses to achieve the same average detection time than a given continuous measurement in strong, weak, or intermediate coupling regimes, generalizing the results in L. S. Schulman, Phys. Rev. A 57, 1509 (1998).
Discrete stochastic processes (DSP) are instrumental for modelling the dynamics of probabilistic systems and have a wide spectrum of applications in science and engineering. DSPs are usually analyzed via Monte Carlo methods since the number of realizations increases exponentially with the number of time steps, and importance sampling is often required to reduce the variance. We propose a quantum algorithm for calculating the characteristic function of a DSP, which completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps. The quantum algorithm takes all stochastic trajectories into account and hence eliminates the need of importance sampling. The algorithm can be further furnished with the quantum amplitude estimation algorithm to provide quadratic speed-up in sampling. Both of these strategies improve variance beyond classical capabilities. The quantum method can be combined with Fourier approximation to estimate an expectation value of any integrable function of the random variable. Applications in finance and correlated random walks are presented to exemplify the usefulness of our results. Proof-of-principle experiments are performed using the IBM quantum cloud platform.
183 - Wei Wang , Yan Lv , A. J. Roberts 2011
We explore the relation between fast waves, damping and imposed noise for different scalings by considering the singularly perturbed stochastic nonlinear wave equations u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on a bounded spatial domain. An asymptotic approximation to the stochastic wave equation is constructed by a special transformation and splitting of $ u u_{t}$. This splitting gives a clear description of the structure of $u$. The approximating model, for small $ u>0$,, is a stochastic nonlinear heat equation for exponent $0leqalpha<1$,, and is a deterministic nonlinear wave equation for exponent $alpha>1$,.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا