Do you want to publish a course? Click here

Nonlinear variational method for predicting fast collisionless magnetic reconnection

169   0   0.0 ( 0 )
 Added by Makoto Hirota
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges by using a two-fluid model for cold ions and electrons. Explosive growth of the tearing mode enabled by electron inertia is analytically estimated by using an energy principle with a nonlinear displacement map. Decrease of the potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in accelerated reconnection. Release of potential energy by such a fluid displacement leads to unsteady and strong convective flow, which is not damped by the small dissipation effects in high-temperature tokamak plasmas. Direct numerical simulation in slab geometry substantiates the theoretical prediction of the nonlinear growth.



rate research

Read More

A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong convective flow, which theoretically corroborates the inertia-driven collapse model of the sawtooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett. 73, 971 (1994)].
A prediction of the steady-state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of two of the widely examined asymmetric reconnection model [Cassak and Shay, Phys. Plasmas 14, 102114, 2007] in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case [Liu et al., Phys. Rev. Lett. 118, 085101, 2017], this work further suggests that this nearly universal number 0.1, essentially the normalized fast reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic (MHD)-scale constraints.
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
314 - Yi-Hsin Liu , Michael Hesse 2016
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux facilitates reconnection, and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the current sheet and the resulting tearing modes, then the x-line is run over and swallowed by the faster-moving following flux.
125 - F. Pucci , S.Usami , H. Ji 2018
Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, that has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations as well as in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from magnetic field to the plasma, ${bf E}cdot {bf J}$ and the threshold guide field separating two regimes where either the parallel component, $E_{||}J_{||}$, or the perpendicular component, ${bf E}_{perp}cdot {bf J}_{perp}$, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields, kinetic, and thermal energy of different species, from electron to ion scales, showing there is no significant variation for different guide field configurations. Finally we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا