Do you want to publish a course? Click here

Broadband Excitation by Chirped Pulses: Application to Single Electron Spins in Diamond

406   0   0.0 ( 0 )
 Added by Ingo Niemeyer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the power over a wider bandwidth. As a simple case, we use microwave pulses with a linear frequency chirp. We use these pulses to excite spectra of single NV-centers in a Ramsey experiment. Compared to the conventional Ramsey experiment, our approach increases the bandwidth by at least an order of magnitude. Compared to the conventional ODMR experiment, the chirped Ramsey experiment does not suffer from power broadening and increases the resolution by at least an order of magnitude. As an additional benefit, the chirped Ramsey spectrum contains not only `allowed single quantum transitions, but also `forbidden zero- and double quantum transitions, which can be distinguished from the single quantum transitions by phase-shifting the readout pulse with respect to the excitation pulse or by variation of the external magnetic field strength.



rate research

Read More

Nanomagnetometry using the nitrogen-vacancy (NV) centre in diamond has attracted a great deal of interest because of the combined features of room temperature operation, nanoscale resolution and high sensitivity. One of the important goals for nano-magnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis shows how a single molecule at the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV centre on a time scale of order seconds with nanometer precision. We perform spatio-temporal resolution optimisation and also outline paths to greater sensitivity. In addition, the method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
We report detection and coherent control of a single proton nuclear spin using an electronic spin of the nitrogen-vacancy (NV) center in diamond as a quantum sensor. In addition to determining the NV-proton hyperfine parameters by employing multipulse sequences, we polarize and coherently rotate the single proton spin, and detect an induced free precession. Observation of free induction decays is an essential ingredient for high resolution proton nuclear magnetic resonance, and the present work extends it to the atomic scale. We also discuss the origin of the proton as incorporation during chemical vapor deposition growth, which provides an opportunity to use protons in diamond as built-in quantum memories coupled with the NV center.
We suggest a new type of nano-electromechanical resonator, the functionality of which is based on a magnetic field induced deflection of an appropriate cantilever that oscillates between nitrogen vacancy (NV) spins in daimond. Specifically, we consider a Si(100) cantilever coated with a thin magnetic Ni film. Magnetoelastic stress and magnetic-field induced torque are utilized to induce a controlled cantilever deflection. It is shown that, depending on the value of the system parameters, the induced asymmetry of the cantilever deflection substantially modifies the characteristics of the system. In particular, the coupling strength between the NV spins and the degree of entanglement can be controlled through magnetoelastic stress and magnetic-field induced torque effects. Our theoretical proposal can be implemented experimentally with the potential of increasing several times the coupling strength between the NV spins as compared to the maximal coupling strength reported before in P. Rabl, et al. Phys. Rev. B 79, 041302(R) (2009).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا