Do you want to publish a course? Click here

Pair Breaking Caused by Magnetic Impurities in the High-T$_text{C}$ Superconductor Bi$_{2.1}$Sr$_{1.9}$Ca(Cu$_{1-x}$Fe$_{x}$)$_{2}$O$_{y}$

103   0   0.0 ( 0 )
 Added by Stephen Parham
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Conventional superconductivity is robust against the addition of impurities unless the impurities are magnetic in which case superconductivity is quickly suppressed. Here we present a study of the cuprate superconductor Bi$_2$Sr$_2$Ca$_1$Cu$_2$O$_{8+delta}$ that is intentionally doped with the magnetic impurity, Fe. Through the use of our Tomographic Density of States (TDoS) technique, we find that while the superconducting gap magnitude is essentially unaffected by the inclusion of iron, the onset of superconductivity, T$_{C}$, and the pair-breaking rate are strongly dependent and correlated. These findings suggest that, in the cuprates, the pair-breaking rate is critical to the determination of T$_{C}$ and that magnetic impurities do not disrupt the strength of pairing but rather the lifetime of the pairs.



rate research

Read More

In conventional superconductors, magnetic impurities form an impurity band due to quantum interference of the impurity bound states, leading to suppression of the superconducting transition temperature. Such quantum interference effects can also be expected in d-wave superconductors. Here, we use scanning tunneling microscopy to investigate the effect of multiple non-magnetic impurities on the local electronic structure of the high-temperature superconductor Bi$_{2}$Sr$_{2}$Ca(Cu$_{1-x}$Zn$_{x}$)$_{2}$O$_{8+delta}$. We find several fingerprints of quantum interference of the impurity bound states including: (i) a two-dimensional modulation of local density-of-states with a period of approximately 5.4 AA along the $a$- and $b$-axes, which is indicative of the d-wave superconducting nature of the cuprates; (ii) abrupt spatial variations of the impurity bound state energy; (iii)an appearance of positive energy states; (iv) a split of the impurity bound state. All of these findings provide important insight into how the impurity band in d-wave superconductors is formed.
We have studied the chemical potential shift in the high-temperature superconductor Bi$_2$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ({it R} = Pr, Er), where the hole concentration is varied from 0.025 to 0.17 per Cu, by precise measurements of core-level photoemission spectra. The result shows that the shift becomes slow in the underdoped region as in the case of La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO) but the effect is much weaker than in LSCO. The observed shift in the present system can be relatively well explained by numerical results on the doped two-dimensional Hubbard model, and suggests that the change of the electronic structure induced by hole doping is less influenced by stripe fluctuations than in LSCO.
Longitudinal-field muon-spin-relaxation measurements have revealed inhomogeneous distribution of the internal magnetic field at temperatures above the bulk superconducting (SC) transition temperature, $T_{rm c}$, in slightly overdoped Bi$_2$Sr$_2$Ca$_{1-x}$Y$_x$Cu$_2$O$_{8+delta}$. The distribution width of the internal magnetic field, $Delta$, evolves continuously with decreasing temperature toward $T_{rm c}$. The origin of the increase in $Delta$ is discussed in terms of the creation of SC domains in a sample.
166 - F. Massee , Y. K. Huang , J. Kaas 2010
The pseudogap state is one of the peculiarities of the cuprate high temperature superconductors. Here we investigate its presence in BaCo$_{x}$Fe$_{2-x}$As$_{2}$, a member of the pnictide family, with temperature dependent scanning tunneling spectroscopy. We observe that for under, optimally and overdoped systems the gap in the tunneling spectra always closes at the bulk T$_{c}$, ruling out the presence of a pseudogap state. For the underdoped case we observe superconducting gaps over large fields of view, setting a lower limit of tens of nanometers on the length scale of possible phase separated regions.
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La$_{2-x}$Ca$_{1+x}$Cu$_{2}$O$_{6}$ with $x=0.10$ and 0.15 and transition temperature $T_{c}^{rm m} = 54$ K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO$_2$ bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا