No Arabic abstract
The pseudogap state is one of the peculiarities of the cuprate high temperature superconductors. Here we investigate its presence in BaCo$_{x}$Fe$_{2-x}$As$_{2}$, a member of the pnictide family, with temperature dependent scanning tunneling spectroscopy. We observe that for under, optimally and overdoped systems the gap in the tunneling spectra always closes at the bulk T$_{c}$, ruling out the presence of a pseudogap state. For the underdoped case we observe superconducting gaps over large fields of view, setting a lower limit of tens of nanometers on the length scale of possible phase separated regions.
Superconductivity and ferromagnetism are two antagonistic cooperative phenomena, which makes it difficult for them to coexist. Here we demonstrate experimentally that they do coexist in EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ with $0.2leq xleq0.4$, in which superconductivity is associated with Fe-3$d$ electrons and ferromagnetism comes from the long-range ordering of Eu-4$f$ moments via Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. The coexistence is featured by large saturated ferromagnetic moments, high and comparable superconducting and magnetic transition temperatures, and broad coexistence ranges in temperature and field. We ascribe this unusual phenomenon to the robustness of superconductivity as well as the multi-orbital characters of iron pnictides.
We have studied the electronic structure of Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ ($x$=0.08), which fails to become a superconductor in spite of the formal hole doping like Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, by photoemission spectroscopy and X-ray absorption spectroscopy (XAS). With decreasing temperature, a transition from the paramagnetic phase to the antiferromagnetic phase was clearly observed by angle-resolved photoemission spectroscopy. XAS results indicated that the substituted Mn atoms form a strongly hybridized ground state. Resonance-photoemission spectra at the Mn $L_{3}$ edge revealed that the Mn 3d partial density of states is distributed over a wide energy range of 2-13 eV below the Fermi level ($E_F$), with little contribution around $E_F$. This indicates that the dopant Mn 3$d$ states are localized in spite of the strong Mn 3d-As $4p$ hybridization and split into the occupied and unoccupied parts due to the on-site Coulomb and exchange interaction. The absence of superconductivity in Ba(Fe$_{1-x}$Mn$_{x}$)$_{2}$As$_{2}$ can thus be ascribed both to the absence of carrier doping in the FeAs plane, and to the strong stabilizaiton of the antiferromagnetic order by the Mn impurities.
Using muon spin rotation and infrared spectroscopy we study the relation between magnetism and superconductivity in Ba$ _{1-x} $K$ _{x} $Fe$ _{2} $As$ _{2} $ single crystals from the underdoped to the slightly overdoped regime. We find that the Fe magnetic moment is only moderately suppressed in most of the underdoped region where it decreases more slowly than the N{e}el-temperature, $ T^{mathrm{N}} $. This applies for both the total Fe moment obtained from muon spin rotation and for the itinerant component that is deduced from the spectral weight of the spin-density-wave pair breaking peak in the infrared response. In the moderately underdoped region, superconducting and static magnetic orders co-exist on the nano-scale and compete for the same electronic states. The static magnetic moment disappears rather sharply near optimal doping, however, in the slightly overdoped region there is still an enhancement or slowing down of spin fluctuations in the superconducting state. Similar to the gap magnitude reported from specific heat measurements, the superconducting condensate density is nearly constant in the optimally- and slightly overdoped region, but exhibits a rather pronounced decrease on the underdoped side. Several of these observations are similar to the phenomenology in the electron doped counterpart Ba(Fe$ _{1-y} $Co$ _{y} $)$ _{2} $As$ _{2} $.
We measured the pressure dependence of in-plane resistivity $rho_{ab}$ in the recently-discovered iron-based superconductor Ca$_{10}$(Ir$_{4}$As$_{8}$)(Fe$_{2-x}$Ir$_{x}$As$_{2}$)$_{5}$, which shows a unique structural phase transition in the absence of magnetic ordering, with a superconducting transition temperature $T_{rm c}$ = 16 K and structural phase transition temperature $T_{rm s}$ $simeq$ 100 K at ambient pressure. $T_{rm c}$ and $T_{rm s}$ are suppressed on applying pressure and disappear at approximately 0.5 GPa, suggesting a relationship between superconductivity and structure. Ca$_{10}$(Ir$_{4}$As$_{8}$)(Fe$_{2-x}$Ir$_{x}$As$_{2}$)$_{5}$ is a rather rare example in which the superconductivity appears only in a low-temperature ordered phase. The fact that the change in the crystal structure is directly linked with superconductivity suggests that the crystal structure as well as magnetism are important factors governing superconductivity in iron pnictides.
The in-plane London penetration depth, $Deltalambda(T)$, was measured using a tunnel diode resonator technique in single crystals of Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ with doping levels $x$ ranging from heavily underdoped, $x$=0.16 ($T_{c}$=7~K) to nearly optimally doped, $x$= 0.34 ($T_{c}=$39 K). Exponential saturation of $Deltalambda(T)$ in the $Tto0$ limit is found in optimally doped samples, with the superfluid density $rho_{s}(T)equiv(lambda(0)/lambda(T))^{2}$ quantitatively described by a self-consistent $gamma$-model with two nodeless isotropic superconducting gaps. As the doping level is decreased towards the extreme end of the superconducting dome at $x$=0.16, the low-temperature behavior of $Deltalambda(T)$ becomes non-exponential and best described by the power-law $Deltalambda(T)propto T^{2}$, characteristic of strongly anisotropic gaps. The change between the two regimes happens within the range of coexisting magnetic/nematic order and superconductivity, $x<0.25$, and is accompanied by a rapid rise in the absolute value of $Deltalambda(T)$ with underdoping. This effect, characteristic of the competition between superconductivity and other ordered states, is very similar to but of significantly smaller magnitude than what is observed in the electron-doped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ compounds. Our study suggests that the competition between superconductivity and magnetic/nematic order in hole-doped compounds is weaker than in electron-doped compounds, and that the anisotropy of the superconducting state in the underdoped iron pnictides is a consequence of the anisotropic changes in the pairing interaction and in the gap function promoted by both magnetic and nematic long-range order.