No Arabic abstract
We report a detailed investigation of RECoPO (RE = La, Pr) and LaCoAsO materials performed by means of muon spin spectroscopy. Zero-field measurements show that the electrons localized on the Pr$^{3+}$ ions do not play any role in the static magnetic properties of the compounds. Magnetism at the local level is indeed fully dominated by the weakly-itinerant ferromagnetism from the Co sublattice only. The increase of the chemical pressure triggered by the different ionic radii of La$^{3+}$ and Pr$^{3+}$, on the other hand, plays a crucial role in enhancing the value of the magnetic critical temperature and can be mimicked by the application of external hydrostatic pressure up to 24 kbar. A sharp discontinuity in the local magnetic field at the muon site in LaCoPO at around 5 kbar suggests a sizeable modification in the band structure of the material upon increasing pressure. This scenario is qualitatively supported by emph{ab-initio} density-functional theory calculations.
The direct correspondence between Co band ferromagnetism and structural parameters is investigated in the pnictide oxides $R$CoPO for different rare-earth ions ($R$ = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and {it ab-initio} calculations, complementing our results published previously [G. Prando {it et al.}, {it Phys. Rev. B} {bf 87}, 064401 (2013)]. Both the transition temperature to the ferromagnetic phase $T_{_{textrm{C}}}$ and the volume of the crystallographic unit cell $V$ are found to be conveniently tuned by the $R$ ionic radius and/or external pressure. A linear correlation between $T_{_{textrm{C}}}$ and $V$ is reported and {it ab-initio} calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, $R$ ions are shown to be influencing the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic $f$ degrees of freedom, which are only giving a sizeable magnetic contribution at much lower temperatures.
We investigate the effect of external pressure on magnetic order in undoped LnFeAsO (Ln = La, Ce, Pr, La) by using muon-spin relaxation measurements and ab-initio calculations. Both magnetic transition temperature $T_m$ and Fe magnetic moment decrease with external pressure. The effect is observed to be lanthanide dependent with the strongest response for Ln = La and the weakest for Ln = Sm. The trend is qualitatively in agreement with our DFT calculations. The same calculations allow us to assign a value of 0.68(2) $mu_B$ to the Fe moment, obtained from an accurate determination of the muon sites. Our data further show that the magnetic lanthanide order transitions do not follow the simple trend of Fe, possibly as a consequence of the different $f$-electron overlap.
We study the impact of hydrostatic pressure on superconductivity of new BiS2 based layered REO0.5F0.5BiS2 (RE-La, Pr, and Nd) compounds through the measurements of dc electrical resistivity. The REO0.5F0.5BiS2 (RE-La, Pr and Nd) compounds synthesized by solid state reaction route via vacuum encapsulation are crystallized in the tetragonal P4/nmm space group. At ambient pressure the superconducting transition onset temperatures are 2.7K, 3.5K and 4.5K which are enhanced substantially under external hydrostatic pressure to 10.5K, 7.8K and 7.5K for LaO0.5F0.5BiS2, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 respectively at 1.68GPa. The normal state electrical resistivity decreases with applied pressure for REO0.5F0.5BiS2 (RE-La, Pr and Nd). The electrical resistivity under magnetic field and applied pressure has been measured to estimate upper critical field, the values of which are 15.9Tesla, 8.8Tesla and 8.2Tesla for LaO0.5F0.5BiS2, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 compounds. Substantial enhancement of superconductivity under moderate pressures in studied new BiS2 based superconductors call for the attention of condensed matter physics community.
We have investigated the temperature dependence of the magnetic susceptibility $chi(T)$ of rare-earth cobaltites RCoO$_3$ (R= La, Pr, Nd, Sm, Eu) in the temperature range $4.2-300$ K and also the influence of hydrostatic pressure up to 2 kbar on their susceptibility at fixed temperatures $T=78 $ and 300 K. The specific dependence $chi(T)$ observed in LaCoO$_3$ and the anomalously large pressure effect (d ln $chi$/d$Psim -100$ Mbar$^{-1}$ for $T = 78$ K) are analyzed in the framework of a two-level model with energy levels difference $Delta$. The ground state of the system is assumed to be nonmagnetic with the zero spin of Co$^{3+}$ ions, and magnetism at a finite temperature is determined by the excited magnetic spin state. The results of the analysis, supplemented by theoretical calculations of the electronic structure of LaCoO$_3$, indicate a significant increase in $Delta$ with a decrease in the unit cell volume under the hydrostatic pressure. In the series of RCoO$_3$ (R= Pr, Nd, Sm, Eu) compounds, the volume of crystal cell decreases monotonically due to a decrease in the radius of R$^{3+}$ ions. This leads to an increase in the relative energy $Delta$ of the excited state (the chemical pressure effect), which manifests itself in a decrease in the contribution of cobalt ions to the magnetic susceptibility at a fixed temperature, and also in a decrease in the hydrostatic pressure effect on the susceptibility of RCoO$_3$ compounds, which we have observed at $T=300$ K.
We present the crystal structures and magnetic properties of RE3Sb3Mg2O14 (La3Sb3Mg2O14, Pr3Sb3Mg2O14, Sm3Sb3Mg2O14, Eu3Sb3Mg2O14, Tb3Sb3Mg2O14, and Ho3Sb3Mg2O14), a family of novel materials based on a perfect geometry 2D rare earth Kagome lattice. Structure refinements were performed by the Rietveld method using X-ray diffraction data, indicating that the layered compounds are fully structurally ordered. The compounds crystallize in a rhombohedral supercell of the cubic pyrochlore structure, in the space group R-3m. As indicated by magnetic susceptibility measurements, they exhibit predominantly antiferromagnetic interactions between rare earth moments. Except for possibly Pr3Sb3Mg2O14 and Eu3Sb3Mg2O14, none of the compounds show any signs of magnetic ordering above 2 K. This RE3Sb3Mg2O14 family of compounds is similar to that of RE3Sb3Zn2O14, except the series reported here features a fully ordered distribution of cations in both the nonmagnetic antimony and magnesium sites and the magnetic rare earth kagome sites. The compounds appear to be relatively defect-free and are therefore model systems for investigating magnetic frustration on an ideal 2D rare earth Kagome lattice.