Do you want to publish a course? Click here

Clock-controlled emission of single-electron wavepackets in a solid-state circuit

165   0   0.0 ( 0 )
 Added by Jonathan Fletcher
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the transmission of single electron wavepackets from a clock-controlled source through an empty high-energy edge channel. The quantum dot source is loaded with single electrons which are then emitted with high kinetic energy ($sim$150 meV). We find at high magnetic field that these electron can be transported over several microns without inelastic electron-electron or electron-phonon scattering. Using a time-resolved spectroscopic technique, we measure the electron energy and wavepacket size at picosecond time scales. We also show how our technique can be used to switch individual electrons into different paths.



rate research

Read More

255 - H. Duprez , E. Sivre , A. Anthore 2019
The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties of conductors at small scales. Novel electronic implementations of quantum optics devices are now available with perspectives such as flying qubit manipulations. However, electronic quantum interferences in conductors remained up to now limited to propagation paths shorter than $30,mu$m, independently of the material. Here we demonstrate strong electronic quantum interferences after a propagation along two $0.1,$mm long pathways in a circuit. Interferences of visibility as high as $80%$ and $40%$ are observed on electronic analogues of the Mach-Zehnder interferometer of, respectively, $24,mu$m and $0.1,$mm arm length, consistently corresponding to a $0.25,$mm electronic phase coherence length. While such devices perform best in the integer quantum Hall regime at filling factor 2, the electronic interferences are restricted by the Coulomb interaction between copropagating edge channels. We overcome this limitation by closing the inner channel in micron-scale loops of frozen internal degrees of freedom, combined with a loop-closing strategy providing an essential isolation from the environment.
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99 %, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex solid-state environment. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting phase via spin-echo interferometry. We find good agreement with Berrys predictions within experimental errors. We also investigated the role of the environment on the geometric phase, and observed that unlike other solid-state qubit systems, the dephasing was primarily dominated by fast radial fluctuations in the path.
Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.
We demonstrate an ultrafast voltage sampling technique using a stream of electron wavepackets. Electrons are emitted from a single-electron pump and travel through electron waveguides towards a detector potential barrier. Our electrons sample an instantaneous voltage on the gate upon arrival at the detector barrier. Fast sampling is achieved by minimising the duration that the electrons interact with the barrier, which can be made as small as a few picoseconds. The value of the instantaneous voltage can be determined by varying the gate voltage to match the barrier height to the electron energy, which is used as a stable reference. The test waveform can be reconstructed by shifting the electron arrival time against it. We argue that this method has scope to increase the bandwidth of voltage sampling to 100 GHz and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا