No Arabic abstract
The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic superconductivity in several correlated materials. However, density waves have been difficult to isolate in the presence of chemical disorder, and the suspected causal link between competing density wave orders and high temperature superconductivity is not understood. Here we use scanning tunneling microscopy to image a previously unknown unidirectional (stripe) charge density wave (CDW) smoothly interfacing with the familiar tri-directional (triangular) CDW on the surface of the stoichiometric superconductor NbSe$_2$. Our low temperature measurements rule out thermal fluctuations, and point to local strain as the tuning parameter for this quantum phase transition. We use this discovery to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe$_2$. Our results highlight the importance of local strain in governing phase transitions and competing phenomena, and suggest a new direction of inquiry for resolving similarly longstanding debates in cuprate superconductors and other strongly correlated materials.
The influence of high electric fields on the charge stripe order in Nd1.67Sr0.33NiO4 was studied by means of simultaneous hard x-ray diffraction and electrical transport experiments. Direct measurements of the charge stripe satellite peaks in zero and high electric fields provide no evidence for a deformation or a sliding of the stripe lattice, which contradicts previous indications from non-linear conductance effects. By using the order parameter of a structural phase transition for instant sample temperature measurements, non-linear transport effects can be attributed to resistive heating. Implications for the pinning of stripes in the nickelates are discussed.
Charge excitations were studied for stipe-ordered 214 compounds, La$_{5/3}$Sr$_{1/3}$NiO$_{4}$ and 1/8-doped La$_{2}$(Ba, Sr)$_{x}$CuO$_{4}$ using resonant inelastic x-ray scattering in hard x-ray regime. We have observed charge excitations at the energy transfer of 1 eV with the momentum transfer corresponding to the charge stripe spatial period both for the diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can be interpreted as a collective stripe excitation or charge excitonic mode to a stripe-related in-gap state.
Recently we have used spectroscopic mapping with the scanning tunneling microscope to probe modulations of the electronic density of states in single crystals of the high temperature superconductor Bi2Sr2CaCu2O8+d (Bi-2212) as a function of temperature [C. V. Parker et al., Nature (London) 468, 677 (2010)]. These measurements showed Cu-O bond-oriented modulations that form below the pseudogap temperature with a temperature-dependent energy dispersion displaying different behaviors in the superconducting and pseudogap states. Here we demonstrate that quasiparticle scattering off impurities does not capture the experimentally observed energy- and temperature-dependence of these modulations. Instead, a model of scattering of quasiparticles from short-range stripe order, with periodicity near four lattice constants (4a), reproduces the experimentally observed energy dispersion of the bond-oriented modulations and its temperature dependence across the superconducting critical temperature, Tc. The present study confirms the existence of short-range stripe order in Bi-2212.
A combined neutron and x-ray diffraction study of TbBaFe2O5 reveals a rare checkerboard to charge ordering transition. TbBaFe2O5 is a mixed valent compound where Fe2+/Fe3+ ions are known to arrange into a stripe charge-ordered state below TV = 291 K, that consists of alternating Fe2+/Fe3+ stripes in the basal plane running along the b direction. Our measurements reveal that the stripe charge-ordering is preceded by a checkerboard charge-ordered phase between TV < T < T* = 308 K. The checkerboard ordering is stabilized by inter-site coulomb interactions which give way to a stripe state stabilized by orbital ordering.
Ba$_8$CoNb$_6$O$_{24}$ presents a system whose Co$^{2+}$ ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the $S = 1/2$ TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend towards zero-temperature order. Below 0.1 K, however, our low-field measurements show an nexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the $(H,T)$ phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear up-up-down state. Ba$_8$CoNb$_6$O$_{24}$ therefore offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the $S = 1/2$ Heisenberg TLAFM.