Do you want to publish a course? Click here

Scattering from incipient stripe order in the high-temperature superconductor Bi2Sr2CaCu2O8+d

107   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently we have used spectroscopic mapping with the scanning tunneling microscope to probe modulations of the electronic density of states in single crystals of the high temperature superconductor Bi2Sr2CaCu2O8+d (Bi-2212) as a function of temperature [C. V. Parker et al., Nature (London) 468, 677 (2010)]. These measurements showed Cu-O bond-oriented modulations that form below the pseudogap temperature with a temperature-dependent energy dispersion displaying different behaviors in the superconducting and pseudogap states. Here we demonstrate that quasiparticle scattering off impurities does not capture the experimentally observed energy- and temperature-dependence of these modulations. Instead, a model of scattering of quasiparticles from short-range stripe order, with periodicity near four lattice constants (4a), reproduces the experimentally observed energy dispersion of the bond-oriented modulations and its temperature dependence across the superconducting critical temperature, Tc. The present study confirms the existence of short-range stripe order in Bi-2212.

rate research

Read More

In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial period double that of the charge order. In this case, the Josephson coupling between near neighbor planes, especially in a crystal with the special structure of La_{2-x}Ba_xCuO_4, vanishes identically. We propose that this is the underlying cause of the dynamical decoupling of the layers recently observed in transport measurements at x=1/8.
The influence of high electric fields on the charge stripe order in Nd1.67Sr0.33NiO4 was studied by means of simultaneous hard x-ray diffraction and electrical transport experiments. Direct measurements of the charge stripe satellite peaks in zero and high electric fields provide no evidence for a deformation or a sliding of the stripe lattice, which contradicts previous indications from non-linear conductance effects. By using the order parameter of a structural phase transition for instant sample temperature measurements, non-linear transport effects can be attributed to resistive heating. Implications for the pinning of stripes in the nickelates are discussed.
129 - V. Hinkov , D. Haug , B. Fauque 2008
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at milli-Kelvin temperatures. We report the spontaneous onset of a onedimensional, incommensurate modulation of the spin system in the high-temperature superconductor YBa2Cu3O6.45 upon cooling below ~150 K, while static magnetic order is absent above 2 K. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route towards electronic liquid crystals, and nematic order can coexist with high-temperature superconductivity in underdoped cuprates.
A d-wave superconducting phase with coexisting intra-unit-cell orbital current order has the remarkable property that it supports finite size Fermi pockets of Bougoliubov quasiparticles. Experimentally detectable consequences of this include a residual $T$-linear term in the specific heat in the absence of disorder and residual features in the thermal and microwave conductivity in the low disorder limit.
A number of spectacular experimental anomaliescite{li-2007,fujita-2005} have recently been discovered in certain cuprates, notably {LBCO} and {LNSCO}, which exhibit unidirectional spin and charge order (known as ``stripe order). We have recently proposed to interpret these observations as evidence for a novel ``striped superconducting state, in which the superconducting order parameter is modulated in space, such that its average is precisely zero. Here, we show that thermal melting of the striped superconducting state can lead to a number of unusual phases, of which the most novel is a charge $4e$ superconducting state, with a corresponding fractional flux quantum $hc/4e$. These are never-before observed states of matter, and ones, moreover, that cannot arise from the conventional Bardeen-Cooper-Schrieffer (BCS) mechanism. Thus, direct confirmation of their existence, even in a small subset of the cuprates, could have much broader implications for our understanding of high temperature superconductivity. We propose experiments to observe fractional flux quantization, which thereby could confirm the existence of these states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا