Do you want to publish a course? Click here

Stochastically sustained population oscillations in high-beta nanolasers

106   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Non-linear dynamical systems involving small populations of individuals may sustain oscillations in the population densities arising from the discrete changes in population numbers due to random events. By applying these ideas to nanolasers operating with small numbers of emitting dipoles and photons at threshold, we show that such lasers should display photon and dipole population cycles above threshold, which should be observable as a periodic modulation in the second-order correlation function of the nanolaser output. Such a modulation was recently reported in a single-mode vertical-cavity surface-emitting semiconductor laser.



rate research

Read More

158 - Richard Hostein 2010
We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor beta. Lasing is confirmed by measuring the second order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at 8 times the threshold power.
Nanophotonic objects like plasmonic nanoparticles and colloidal quantum dots can complement the functionality of molecular dyes in biomedical optics. However, their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated. However, laser size and threshold remain problematic. Here, we report on the design, high-throughput fabrication and intracellular integration of semiconductor nanodisk lasers. By exploiting the large optical gain and high refractive index of GaInP/AlGaInP quantum wells, we obtain lasers with volumes 1000-fold smaller than the eukaryotic nucleus ($V_{laser}$<0.1 $mu$m$^3$), lasing thresholds 500-fold below the pulse energies typically used in two-photon microscopy ($E_{th} approx $0.13 pJ), and excellent spectral stability (<50 pm wavelength shift). Multiplexed labelling with these lasers allows cells-tracking through micro-pores, thus providing a powerful tool to study cell migration and cancer invasion.
379 - David Elvira , V. Verma 2011
We report on the higher-order photon correlations of a high-$beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.
A disk around one component of a binary star system with sufficiently high inclination can undergo Kozai-Lidov (KL) oscillations during which the disk inclination and disk eccentricity are exchanged. Previous studies show that without a source of accretion, KL unstable disks exhibit damped oscillations, due to viscous dissipation, that leave the disk stable near or below the critical inclination for KL oscillations. With three-dimensional hydrodynamical simulations we show that a highly misaligned circumbinary disk that flows onto the binary components forms highly inclined circumstellar disks around each component. We show that a continuous infall of highly inclined material allows the KL oscillations to continue. The KL disk oscillations produce shocks and eccentricity growth in the circumstellar disks that affect the conditions for planet formation.
We investigate instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dot attached to a vibrating cantilever via asymmetric tunnel contact. The Kondo resonance in electron tunneling between source and shuttle facilitates self-sustained oscillations originated from strong coupling of mechanical and electronic/spin degrees of freedom. We analyze stability diagram for two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle and find that the saturation amplitude of oscillation is associated with the retardation effect of Kondo-cloud. The results shed light on possible ways of experimental realization of dynamical probe for the Kondo-cloud by using high tunability of mechanical dissipation as well as supersensitive detection of mechanical displacement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا