No Arabic abstract
Tree-based models have proven to be an effective solution for web ranking as well as other problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, given an already-trained model. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processor architectures. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures and significantly improve the speed of tree-based models over hard-coded if-else blocks. Our work contributes to the exploration of architecture-conscious runtime implementations of machine learning algorithms.
We predict restaurant ratings from Yelp reviews based on Yelp Open Dataset. Data distribution is presented, and one balanced training dataset is built. Two vectorizers are experimented for feature engineering. Four machine learning models including Naive Bayes, Logistic Regression, Random Forest, and Linear Support Vector Machine are implemented. Four transformer-based models containing BERT, DistilBERT, RoBERTa, and XLNet are also applied. Accuracy, weighted F1 score, and confusion matrix are used for model evaluation. XLNet achieves 70% accuracy for 5-star classification compared with Logistic Regression with 64% accuracy.
k-means is a widely used clustering algorithm, but for $k$ clusters and a dataset size of $N$, each iteration of Lloyds algorithm costs $O(kN)$ time. Although there are existing techniques to accelerate single Lloyd iterations, none of these are tailored to the case of large $k$, which is increasingly common as dataset sizes grow. We propose a dual-tree algorithm that gives the exact same results as standard $k$-means; when using cover trees, we use adaptive analysis techniques to, under some assumptions, bound the single-iteration runtime of the algorithm as $O(N + k log k)$. To our knowledge these are the first sub-$O(kN)$ bounds for exact Lloyd iterations. We then show that this theoretically favorable algorithm performs competitively in practice, especially for large $N$ and $k$ in low dimensions. Further, the algorithm is tree-independent, so any type of tree may be used.
Machine learning (ML) has proven itself in high-value web applications such as search ranking and is emerging as a powerful tool in a much broader range of enterprise scenarios including voice recognition and conversational understanding for customer support, autotuning for videoconferencing, intelligent feedback loops in large-scale sysops, manufacturing and autonomous vehicle management, complex financial predictions, just to name a few. Meanwhile, as the value of data is increasingly recognized and monetized, concerns about securing valuable data and risks to individual privacy have been growing. Consequently, rigorous data management has emerged as a key requirement in enterprise settings. How will these trends (ML growing popularity, and stricter data governance) intersect? What are the unmet requirements for applying ML in enterprise settings? What are the technical challenges for the DB community to solve? In this paper, we present our vision of how ML and database systems are likely to come together, and early steps we take towards making this vision a reality.
The newly emerged transformer technology has a tremendous impact on NLP research. In the general English domain, transformer-based models have achieved state-of-the-art performances on various NLP benchmarks. In the clinical domain, researchers also have investigated transformer models for clinical applications. The goal of this study is to systematically explore three widely used transformer-based models (i.e., BERT, RoBERTa, and XLNet) for clinical relation extraction and develop an open-source package with clinical pre-trained transformer-based models to facilitate information extraction in the clinical domain. We developed a series of clinical RE models based on three transformer architectures, namely BERT, RoBERTa, and XLNet. We evaluated these models using 2 publicly available datasets from 2018 MADE1.0 and 2018 n2c2 challenges. We compared two classification strategies (binary vs. multi-class classification) and investigated two approaches to generate candidate relations in different experimental settings. In this study, we compared three transformer-based (BERT, RoBERTa, and XLNet) models for relation extraction. We demonstrated that the RoBERTa-clinical RE model achieved the best performance on the 2018 MADE1.0 dataset with an F1-score of 0.8958. On the 2018 n2c2 dataset, the XLNet-clinical model achieved the best F1-score of 0.9610. Our results indicated that the binary classification strategy consistently outperformed the multi-class classification strategy for clinical relation extraction. Our methods and models are publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerRelationExtraction. We believe this work will improve current practice on clinical relation extraction and other related NLP tasks in the biomedical domain.
Populating ontology graphs represents a long-standing problem for the Semantic Web community. Recent advances in translation-based graph embedding methods for populating instance-level knowledge graphs lead to promising new approaching for the ontology population problem. However, unlike instance-level graphs, the majority of relation facts in ontology graphs come with comprehensive semantic relations, which often include the properties of transitivity and symmetry, as well as hierarchical relations. These comprehensive relations are often too complex for existing graph embedding methods, and direct application of such methods is not feasible. Hence, we propose On2Vec, a novel translation-based graph embedding method for ontology population. On2Vec integrates two model components that effectively characterize comprehensive relation facts in ontology graphs. The first is the Component-specific Model that encodes concepts and relations into low-dimensional embedding spaces without a loss of relational properties; the second is the Hierarchy Model that performs focused learning of hierarchical relation facts. Experiments on several well-known ontology graphs demonstrate the promising capabilities of On2Vec in predicting and verifying new relation facts. These promising results also make possible significant improvements in related methods.